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An Energy-Based Model of
Longitudinal Splitting in
«.opmi | Unidirectional Fiber-Reinforced
6. Ravishandran | Gomposites

Graduate Aeronautical Laboratories, Unidirectional fiber-reinforced composites are often observed to fail in a longitudinal
California Institute of Technology, splitting mode in the fiber direction under far-field compressive loading with weak lateral
Pasadena, CA 91125 confinement. An energy-based model is developed based on the principle of minimum

potential energy and the evaluation of effective properties to obtain an analytical approxi-
mation to the critical stress for longitudinal splitting. The analytic estimate for the com-
pressive strength is used to illustrate its dependence on material properties, surface
energy, fiber volume fraction, fiber diameter, and lateral confining pressure. The predic-
tions of the model show good agreement with available experimental data.
[S0021-893600)02003-1

1 Introduction the strength of the composites in terms of the properties of fiber,
Fiber-reinforced composite materials are used in the form H?atrix_, and their interface. Motivated_ by these experimental 9b'
laminates in numerous structural applications by taking advantz;%‘:érvat'or_ls and_ the c_urrent Iack of s_atlsfactory modt_als for longitu-
of their directional properties. Such applications are often limitedfn@l (8xia) splitting in compositegwith an exception in the work
by the compressive strength of the composite materials that £&[9)), @ new energy-based approach for predicting compressive
used. Failure modes in composite laminates are complex and 8f@ngth of unidirectional fiber reinforced composites has been
not always easily understodd.g.,[1,2]). On the other hand, uni- developed and is presented here.
directional fiber-reinforced composites serve as excellent modelOne way to investigate the longitudinal splitting under com-
materials for investigating the associated strength and failure gession is to compute the energy release rate and track the evo-
sues. Unidirectional fiber-reinforced composites also have multhion of dominant microcracks in the composites. However, the
lower compressive strength than their tensile strength for loadistress field and the evolution law for a crack embedded in a highly
in the fiber direction. Therefore, the prediction of the compressiveterogeneous material such as fiber-reinforced composites is ex-
strength is a critical issue in designing composite materials aneémely complicated and hence a satisfactory analytic approach
composite structures. Commonly observed failure modes in Ugippears not to be plausible in this case. In this paper, an energetic
directional composites under compression in the fiber directigfpproach similar to the one that has been used for studying axial
include (i) longitudinal or axial splitting due to transverse cracksp"tting in isotropic brittle solids such as cerami§s3]) is em-
ing, (ii) fiber kinking (initiation and propagation of kink bands O ployed to gain insights into longitudinal splitting phenomena in
microbuckle, and (iii) longitudinal splitting followed by fiber giner reinforced composites. By combining the principle of mini-
kinking (see for e.g[2,3]). These failure modes are also observeq}, ., hotential energy and the effective properties of the compos-

. i . . |'E'é‘, an energy-based criterion for longitudinal splitting of unidi-
Howeve_r, the mechanisms, which govern these failure mOdesrg]Ftional fiber-reinforced composite is established. Haghi
composites, are not completely understood. The effect of late s used a similar approach in determining the energy release rate
confinement on compressive strength is an outstanding issue pe- pp 9 9y

cause of its relevance in developing and validating existing ph@erracturehlnr:amlnated pompgsne;. f the fib inf d
nomenological failure models for compositesg.,[4,5]). Also, in ue to the heterogeneity and anisotropy of the fiber-reinforce

composite laminates, even under uniaxial compression, the stré@g'Posite, excessive elastic energy is stored in the composite
state is multiaxial, and hence there is a need for models that ¢4ifler compression. Longitudinal splitting can be regarded as a
reliably predict their strength under multiaxial stress states. FBfocess in which the excessive elastic energy is released through
the kinking mode of failure, a wide range of experimental, andbe formation of new surfaces. Therefore, when the reduction of
lytical, computational efforts have been undertakem.,[2,3,6— the stored elastic energy by splitting compensates the surface en-
9]). On the other hand, relatively little is known about longitudina@rgy, the specimen splits. This energy-based failure criterion com-
splitting due to transverse cracking. A number of researchers hdused with the effective properties of the composite based on the
observed an increase in the compressive strength with increaséhastic properties of the matrix and the fiber provides an analytical
lateral confinemente.g.,[10-12). Further, from a materials de- expression for the critical stre§sompressive strengttior longi-

sign point of view, it is desirable to have models that can predigiidinal splitting. This expression illustrates the effect of material
properties, surface energy, fiber volume fraction, fiber diameter,
" ContributedEby the Applfied M%cllha?ics piv{?"”&“ﬁ?ﬁ“'cm SOf':AIETY OF and lateral confining pressure on the critical axial compressive
MEgﬁim:SQLMamilsh‘cfif)??e(?éi\?eud klyilatLOenAlgMEeApplied Mzsf’;lgrlw_iczFDist'TIc;LE,[?JuneStress fOI" Iongltu_dlnal Sp“tt'“q The model pl’et.ZiICtIOI’lS ajre com-
9, 1999; final revision, Dec. 7, 1999. Associate Technical Editor: K. T. Ramespared with available experimental results in the literature

Discussion on the paper should be addressed to the Technical Editor, Profe%fg_ro 11 ]_5) and show good agreement. The predictions break
Lewis T. Wheeler, Department of Mechanical Engineering, University of Houston e - . ..
Houston, TX 77204-4792, and will be accepted until four months after final publf—jown for large confining pressures due to failure mode transition

cation of the paper itself in the ASMEDIRNAL OF APPLIED MECHANICS. to kinking which is not accounted for in the present model.
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c c Because of the unidirectional reinforcement of the fibers, the
[ ] specimen is transversely isotropic. Besides, the cartesian coordi-
nates,x;, X,, andxs directions are also the principal directions.
Therefore, to evaluatll ,, we need only four independent effec-
‘] tive moduli, namely, the longitudinal Young's modulug; ,
GL‘

GC[} ‘]GC 2 Gflin Poisson ratio,v3,, the plane strain bulk moduluk3; and the
shear modulusG3,. Using the cylindrical RVE introduced be-
X, fore, effective elastic moduli of the unidirectional composite for
X3 [T random in-plane distribution of fibergy ,v3,,K35, and the upper
c c and lower bounds folG3; have been obtained by Hashin and
Rosen[16]. Since the lower bound corresponds to the macro-
stress prescribed problem, the lower bound @y, is used here.
The expressions for the moduli tensor and related elasticity con-
stants are shown in the Appendix in terms of the elastic constants
of the fiber and the matrix as well as their volume fractions.

The average stress-strain relation for the RVE is given as
follows:?

(a) Unsplit (b) Totally Split

Fig. 1 Schematics of unsplit and longitudinally split configu-
rations of a unidirectional fiber composite

2 Energy-Based Model for Longitudinal Splitting = ClEit Cliapt Chioas

2.1 Problem Formulation. Consider a cylindrical specimen

- —* L * *
of an ideat unidirectional fiber-reinforced composite under lateral 020=C1e 111 Core 00t Coaeaa (2.2)
confining stressg ., and axial compressive stress,shown sche- = . — . —
matically in Fig. 1a). Under this setting, compare two configura- 033= Clp 11+ Coge oot Coopas

tions shown in Fig. 1(a) one is unsplit, andb) the otheris totally  The prescribed stress boundary conditions are

split in the fiber direction. Let the total potential energy density of

unsplit and split specimen &, andIl, respectively. Compari- O11=—0 Opp=033=—0; 010=013=023=0 (2.3)

son betweenl,, andIl provides the critical axial stress for split- ) )

ting under given lateral confining stress,. The criterion for Whereo and o are the magnitudes of the axial stress and the
longitudinal splitting is the minimization of the total potential enlateral confinement. Compressive stress components are assumed

ergy density of the specimen. In other words, whép exceeds © be negative. The total potential energy density for the unsplit

Il., the specimen split§13)). specimen]l,, is a quadratic form of the compressive strass,
The total potential energy is computed in terms of the effective Jc* c* c*1-

material properties as a function of the properties of fiber and 1| —° 1 =2 =12 -0

matrix using the concept of representative volume elerfRRWE). M,=—=| —o¢| | CIo C3, C3 — 0o

Instead of considering the entire problem, an auxiliary problem is 2| _ oe " * " -0,

set up focusing on an eleme(RVE) which consists of a fiber 12 w23 “22

surrounded by the matrix according to the volume fraction under * *\ 2 gk x 2

the same strain or stress boundary condition as that of the original _ (Cat Ci%a iclzfcﬁ*zcll%

problem. If the specimen is macroscopically homogeneous, the 4C1; —2C3(C% 1 Cyy)

average strain and stress over the RVE are the same as that of the 1(62 dto.o 1 ap?

entire specimen. In the problem under consideration, because of —_ ]I oy 21)02 L@

the random in-plane distribution of the fibers, the RVE reduces to 2 |ET ET >3 El ¢

a circular cylinder which consists of a single straight fiber of the . . .
specimen length surrounded with matrix according to the fiber 2-2-2 Total Potential Energy of Split Specimefunder the

volume fraction. The issues related to establishing RVEs in fibeteMe boundary condition as that of the unsplit specit@e3) and
reinforced composites are well establisied;.,[16—18). assuming thaeachRVE splits at the boundary of the matrix and

the fiber, i.e., the split is caused by an interfacial crédilami-
nation), the split RVE can be regarded as two columns, consisting
2.2 Energy Criterion for Longitudinal Splitting of either the fiber or the matrix. Such a simplifying assumption
enables gaining insights into the strength of composites. The elas-

2.2.1 Total Potential Energy of Unsplit Specimer.he total tic energy density of the RVE after splitting. , is given by

potential energy density of the unsplit specimBn,, is the same

as the elastic energy density. Hence, under sfiesstion) bound- 1 1
ary condition,II, is given as follows: ESZVJ [— Ea(x):S(x):o-(x) dx
\%
1 1
Hu=—f [—s(x):C(x):s(x)—o-(x):s(x)}dx 1 1 .
Vivl2 =*§0':S*:0'=*§0:(vf5f+vm3n):a (2.5)
1 1 1 _ . . . . .
== j [ — =z o(X):S(x): o-(x)] dx=— oS, 0o (2.1) whereS* is the effective compliance tensor of the split specimen,
Vvl 2 2 vs,v, are volume fractions of fiber and matrix, respectively. The

whereV is the volume of the RVEC(x) andS(x) are the fourth- Matrix volume fractiorv, is assumed throughout to be {by).
order elasticity and compliance tensors at pointespectively, The. fiber and the matrix are assumed to be isotropic anq the
e(x) is the strain field,o(x) is the stress field, and is the Compliance tensor of fiber and matri; Sy, can be expressed in
volumetric average stress tensor ovewhich corresponds to the €rMs Of their respective Young's modulg(,Ey,) and Poisson’s

prescribed stress on the boundary of the specirSeris the ef- alios (v, vy). Therefore, the elastic energy density for the split
fective compliance tensor of the unsplit specimen. s_pecnmenES, is given as a quadratic form of the axial compres-
sive stressg

The fibers of the same diameter are aligned and homogeneously distributed in-the—
plane §,—x3) perpendiculaftransversgto the fiber direction X,). 2Expressions foC},,C5,,C5,,C35 are shown in the Appendix.
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1 . wherep;, p,, andps are expressed in terms of the elastic con-
E=— 50':(Ufsf+vmsm):0' stants of the materials
1/v v 1 ViVi  UmPm Vs
1| v¢ (1-vy) |ty Zm = 7, TmPm 721
== 3|g lot-4moocr2-vodtt — Po2\E T E, BT P E E. B
_vildl=w)  op(loww) 11 43
X{0?— 4o+ 2(1— vy o). (2.6) Ps=—F, + E. 2\ks, T EY )

The surface energy per unit volumE, of the RVE due to  For a given confining pressute, and surface energy densify
splitting can be obtained by introducing a surface energy per uwi{=o,, hence,o; is taken as the critical stregs*. Letting o
area,y =0 in (3.1), the critical stress without confinement, i.e., the un-

confined longitudinal compressive strength for the composite can
r 2yA  2y(2mah)  4yvg

V- R = 2.7) be obtained:

whereA is the lateral surface area of a fiber in the R\#&Hs the a* |Uc:0_ ETEE
radius of the fiber, an® is the radius of the RVE. Note that f mo1
(2.7) is independent of the height of the RVI,the height of the  Equation(3.2) shows that unconfined strength is proportional to
specimen. The surface energycan be interpreted as the energythe square root of surface energy and inversely proportional to the
release rate G,=27v) for interfacial crack initiation along the square root of fiber diameter. This result indicates that for a given
fiber-matrix interface or delaminatioin19]) and the failure is as- volume fraction, all other things remaining unchanged, compos-
sumed to proceed catastrophically following initiatig@0]). The ites with larger fiber diameter are more susceptible to axial split-
relationship between the energy release @tand the local stress ting than smaller diameter fibers. SinEg>E,, in usual fiber-
intensity factorsK, andK;, and the phase angle can be found iRginforced compositesp n/En>vi/E; and EF=u(E; hold.

Liu et al.[19]. . ~ Based on these evaluation8,2) can be simplified as follows:
In the present analysis, the surface energy per unit areis, 1 1
( 1_ Vg l ) -

2yvy

a (3-2)

1/2(Uf Um 1 )1/2

2yvs
a

assumed to be a constane., y is independent ofr and o). In "

reality, as confining pressure, increases, the resistance to longi- o |Uc:0 Enm B =
tudinal (axial) splitting or delamination failure increases consider- . )

ably and hence, the fracture ener@y, or y. Even though this ~ Examining the quadratic form of the energy surfadéo, o)
appears to be consistent with what one might expect, nothingTdlu—Ils for a constant surface energy densjtyand assuming
known at present concerning the effect of pressure on fractdp@t the longitudinalfiber directior) compliance is smaller than

(33)

toughness of composite materials. the lateral(transverse compliance in the compositéypical for
The total potential energy density of the split specinidyg, is Most fiber reinforced compositethe following inequality holds:
the sum of the elastic energy densiB, and the surface energy do*
density,T’, do <1 (3.4)
C
Mg=E¢+T. 2.8
s s (2.8) subject to the constraints
2.3 Criterion for Longitudinal Splitting. From the prin- < 3.5
ciple of minimum potential energy, the criterion for axial splitting 70 (3.59)
can be expressed as and
I1,— 1< 0=unsplit 2.9) E1) F10)
d®=—do+ —do.=0. (3.5
IT,—I[1g=0=neutral (2.9) do dog
I1,— 1> 0=split. 2.9) The first constrain€3.5a) corresponds to axial compression and

the second constrai8.5b) corresponds to the equi-potential line.
Assuming thatl’ is independent of stress state, the equiErom (3.4), one can conclude that if the splitting failure is gov-
potential linell,—Es=T, i.e., II,—II;=0 provides the stress erned by the principle of minimum total potential energy and the
state for the neutral conditiof2.%). Examining the quadratic surface energy densityis a constant, the slope of the relationship
form II,—Es, it can be shown thall,—Es is a monotonically petween compressive strength and confining pressure,oi’e.,
increasing function ofo for o.=constant provided o>0¢. versuso,, cannot exceed unity. Even if the surface energy den-
Therefore, the Cl’ltlca| Condltlon IS glVen by the equallty S|ty y is an increasing function of Conﬁning pressur%' the
I,—I1=0. (2.10) ineqpality(3.4) holds at _Ieast for s_maHrC. The effect of. lateral
confinement and material properties on the compressive strength
The criterion for longitudinal splitting2.10 could be inter- of composites can be investigated by usiBd).
preted in terms of the surface energy of the newly created surfaces

(G.=27) which cause the reduction in the elastic energy of the 3.2 Model Predictions. Examining the functional form
intact (unsplit material. shown in(3.1) and (3.2), important parameters for longitudinal

splitting can be identified ag/a, v;, ando.. To investigate the
dependence of compressive strength on each of these parameters
3 Results and compare the effect of each parameter, parametric studies have
. _ been performed. In the present parametric study, two different
3.1 Compressive Strength. Substituting forIl, and Ils  types of commonly used fiber-reinforced composite are investi-
from (2.4) to (2.8), the critical stress for longitudinal splitting cangated to illustrate the dependence of compressive strength on ma-
be obtained by solvin¢?.10. Since the form of the total potential terja| properties. These materials are a unidirectional E-glass/

energy is a quadratic af, there are two roote; ando: vinylester compositg¢indicated as “G/VE” in the figuresand a
4 [22_ 7 unidirectional carbon/epoxy compositdicated as “C/ER” in

01 0= P20 VP20t~ Pa(Pso—T) (3.1) the figures. Experimental data and material properties for these
’ P1 materials are available in the literatufgl1,15). The relevant

Journal of Applied Mechanics SEPTEMBER 2000, Vol. 67 / 439



Table 1 Material properties of fiber and matrix and geometry of fiber

Fiber Matrix Interface
Ef (GPa) v@ vy a(um) E.,(GPa) Vi Y9 (JIn?)
E-Glass/Vinylester 724 02 01-06? 12.1® 3.69? 0.389 110,210
Carbon/Epoxy 260 0.2 0.3¢” 3.49 1.63Y 0.34Y 140
Carbon/Epoxy 238 0.2 0.69 3.49 4.28° 0.349 140

@waas et al[15];
®weaver and Williamg10];
©parry and Wronskj11];
@assumed

material properties including those of the fiber and the matrix asagnitude of the material properties of each constituent, i.e., fiber
well as the radius of the fibers for these composites are shownaind matrix. Instead, the degree of anisotropy introduced by com-
Table 1. Surface energy densi#is shown in Table 1 are obtained bining the materials with different material properties is an impor-
by calibration to the corresponding experimental data for uncotant factor in the determination of compressive strength. Longitu-
fined compressive strength. dinal splitting can be considered to be the process in which
Figure 2 shows the compressive strength of two types of comaxcessive stored elastic energy due to the heterogeneity and an-
posite for differenty/a and o, (0 and 100 MPawith fixed fiber isotropy can be released through the formation of new surfaces.
volume fractionv =60 percent. One can observe a strong depeihe importance of anisotropy has been evidenced in this paramet-
dence of compressive strength gfa (proportional toy/a) and ric study.
relatively weak dependence om.. Also, the compressive Compressive strength for different and o, with fixed y/a is
strength seems to be almost insensitive to the choice of the matkewn in Fig. 4. Based on experimental observatiogia,=1.32
rial for a given value ofy/a. Small values ofy/a correspond to x 10’ J/n? and y/a=4.17<10’ J/n? are used for E-glass/
low interfacial energyweak interfacg and/or large diameter fi- vinylester and carbon/epoxy, respectively, as the best fitting val-
bers, whereas large values gfa correspond to large interfacial ues for the model prediction of their unconfined compressive
energy(tough interfacgand/or small diameter fibers. The unconstrength([11,15). It is again seen that if the same values fda
fined compressive strengths of E-glass/vinylester composite andre used, the compressive strength for both materials are close to
carbon/epoxy composite with;=60 percent are 667 MPEL5] each other as expected from previously shown parametric studies
and 1.5 GP&([11]), respectively. Based on these experimentgFigs. 2 and B In this case, the difference between the results for
observations, if the; is identical, the carbon/epoxy compositetwo different levels of confinement,=0 MPa o.=100 MPa is
appears to be stronger than the E-glass/vinylester composgmall and nearly constant for all values of shown here. This
However, the strong dependence gfa plays a significant role shows that the effect ofr, on compressive strength is much
here. Suppose is of the same order for both composites, fibeweaker than that of; and is relatively insensitive for a given .
radii a for E-glass/vinylester composite and carbon/epoxy com- . ) ) . .
posite are 12.Jum and 3.4um, respectivelysee Table L This 3.3 Comparison With Experlme_nts._ To ve_rlfy the validity
results iny/a for the carbon/epoxy composite to be approximatel§f the energy-based model for longitudinal splitting, the compres-
four times as that of the E-glass/vinylester composite. ive strengths predicted by the present model are g:ompared with
Figure 3 shows unconfined compressive strer(geh, o.=0) the experimental re;ults obtal_ned for E-g_lass/vmylester_ _and
as a function ofy/a andv;. For a givenyla, effect ofv; on qarbon/epoxy_ composites. Unlaxlal compression tests on gnldlrec-
compressive strength is much stronger than that of the matefignal fiber-reinforced E-glass/vinylester composite with different
properties. This observation together with the insensitivity of thi&P€r volume fraction ranging from 0 percent to 60 percent were
strength to the choice of the material observed in Fig. 2 has tR§'formed by Waas et a[15]. For carbon/epoxy composites,
following implication. The compressive strength of the unidireccOMpression tests on unidirectional fiber-reinforced composites
tional fiber-reinforced composite is relatively insensitive to theNder superposed hydrostatic confinement have been performed

1600 1600 —
] £
E 1200 51200
g g
E £
,‘E 800 w 300
2
F: Z
= / £ ,.
S 400 / ———— G/VE O.= O0MPa g- 400 -4
E /A P G/VE ©, =100MPa £ !
o |- C/ER O, = O0MPa v
s - C/ER O, =100MPa
0 1 1 1 0
0 10 20 30 40
y/a (MJ/m3 ) y/a (MJ/m3 )
Fig. 2 Effect of surface energy and lateral confinement on Fig. 3 Effect of surface energy and fiber volume fraction on
compressive strength  (G/VE stands for E-Glass /vinylester and unconfined compressive strength (o.=0) (G/VE stands for
C/ER stands for carbon /epoxy ) E-Glass/vinylester and C /ER stands for carbon /epoxy )
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g 500 / G/VE G, = OMPa 8 ® Sample A
6 ————— G/VE ©, = 100MPa| 550 ® O Sample B&C
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oo - C/ER_©, = 100MPa
0 L 1 1 5005
30 40 50 60 70 0 50 100 150
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Fig. 4 Effect of fiber volume fraction and lateral confinement Fig. 6 Comparison between experimental results ([10]) and

on compressive strength  (G/VE stands for E-Glass /vinylester model prediction for carbon /epoxy composite, v,=36 percent
and C/ER stands for carbon /epoxy )

by Weaver and William$10] and Parry and WronsKil1]. The as the fiber volume fraction decreases, the average distance be-
input parameters for the model prediction including material propween fibers increases and the surface energy associated with ma-
erties, fiber radius, and surface energy of the material used in thig failure becomes no longer negligible, which results in the
experiments have been shown in Table 1. increase of total surface energy. Also, the nonlinearity of the ma-
Comparison between the model prediction and experimental #x for vinylester ([15]) which is important at low volume frac-
sults by Waas et a[15] provides the measure of the validity oftions of the fiber has been neglected in the present analysis. The
the present model with respect to changing Experimental re- increase in surface energy associated with matrix failure is con-
sults for the unconfined compressive strength from Waas et 8istent with the requirement for larger surface eneydypr lower
[15] are shown in F|g 5. Examining the trend in COmpreSSiV@f . Further work towards quantlﬁcatlon of fracture energlies as a
strength, one can observe a dip betwegr 30 percent and ¢ function of volume fraction in fiber reinforced composites is
=40 percent. Based on this observation, analysis is performed fsteded. The model predictions for the matrix-dominated region
two groups of data sets. One is for law, i.e., v;<30 percent, and the fiber-interface dominated region can be regarded, respec-
the other is for highv;, i.e.,v¢=40 percent. Only the difference tively, as upper and lower bound for compressive strength of the
in these analyses is the input parameter for the surface energy¥omposite. )
The values of the surface energy which enable the model predic-The experimental result shows considerable scatter vfor
tions to show good agreement with experimental resultsare =40 percent. In general, the interfacial toughness is highly depen-
=210 J/n? for the lowv; data set angy= 110 J/n? for the highu dent on local conditions such as size/orientation of initial imper-
data set. In the present mode}, has been assumed to be thdection, mode mixity, and bondingnterface strength and tough-
surface energy associated with delamination between the fiber &§$3: AS a result, the interface properties vary more than the
the matrix. The surface energy associated with the creation of ngy@terial properties of each constituent of composite, i.e., fiber and
surfaces in the matrix has been neglected. In the case ofshigh Matrix. The fracture energy of fiber-reinforced compositeg)(
surface energy associated with matrix failure is negligible sind€Pends strongly on the local mode mixif§t9]). Therefore, for
the average distance between fibers is small and the area of {#e case of low, the scatter in compressive strength is rela-
surface created by matrix failure is much smaller than the off¥ely small since the matrix plays a signifiant role in determining

created by interfacéiiber-matriy debonding. On the other hand,the surface energy associated with splitting. On the other hand,
since the surface energy associated with fiber/matrix debonding is

dominant for highv¢, the local interfacial conditions play a sig-
nificant role in determining the compressive strength. This results

1000 in a large scatter of the compressive strength for composites with
highv; as seen from the experimental results in Fig. 5.
E 800 Comparison between the model prediction and experimental re-
= sults by Weaver and Williamlg10] (WW) and Parry and Wronski
; [11] (PW) provides a measure of the validity of the present model
& 600 with respect to the confining pressure,. To the best knowledge
& of the authors, WW and PW are the most widely accepted reliable
b experimental data regarding compressive failure of unidirectional
£ 400 fiber-reinforced composites under superposed hydrostatic confine-
] ¢ ment including detailed discussion on failure modes. Although
g‘ = ° Experiment some specimen geometry dependence of failure mode is reported
S 2r Prediction (Low V; ) in PW and short specimens used in WW show end effect, their
----- Prediction (High ¥ ) experiments are convincing enough to regard longitudinal split-
0 ! ! 1 ! ting as the dominant failure mode under weak lateral confinement.
10 20 30 40 50 60 The critical stressr* is plotted against the confining pressurg
Fiber Volume Fraction (%) in Fig. 6 (WW for 0<¢,<150 MPa and in Fig. 7(PW for 0

<0,<300 MPa. In the experiments by PW, for higher confining

Fig. 5 Comparison between experimental results  ([15]) and  pressure ¢.>150 MPa), the slope ofr, versusc* graph is
model predictions for E-Glass /vinylester composite steeper than those for lower confining pressure as seen in Fig. 7.
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25 (iii) The effect of confining pressure on compressive strength
- 1 is relatively weak.
= o lf;‘é’(gfcltfi’(‘;nz -y ,-’ The model prediction has been compared with the experimental
| ----- Prediction (1=2) 7 results and showed good agreement. This agreement supports the
-E ————————— Prediction (n=4) / validity of the present method for the analysis of longitudinal
& ,,/' splitting (delamination failurg in unidirectional fiber-reinforced
g / R composites.
@ 20 / P The assumption of a constant would predict longitudinal
2 77 splitting at all levels of confinement and with markedly lower
4 ,'/ strength than experimentally observed ones at high confining pres-
£ Lo0e sures. Beyond certain confining pressure, longitudinal splitting is
S //_’/ completely suppressed and the failure mode translates to kink
Pt banding([10-12). In order to illustrate the effect of increasing
Ls = I fracture surface energy with increasing pressurey is assumed
"o 100 200 300 to depend orv as follows:
Confining Pressure (MPa) oc\"
Y= 'Yo[ 1+ay —*) ] (4.1)
Fig. 7 Comparison between experimental results ([11]) and %o

model predictions with the effect of increasing surface energy wherey, is surface energy for.=0, o3 is the unconfined com-
for carbon /epoxy composite,  v/=60 percent pressive strength is the confining pressure hardening exponent,
and e, is a positive dimensionless parameter corresponding to the

o ] ) ) exponenn. Forn#0 in (4.1), yincreases as increases and this

This increase of the slope is also observed in the experiments f¥yits in nonlinear dependence of model prediction of compres-

WW. Besides, both observed failure mode transition from longkjve strength omr, . In this case, the inequalit.4) for the slope

tudinal splitting to kink banding around.= 150 MPa. Therefore, o ,* versuso,. being less than unity holds at least for small.

the comparisons are restricted to low Ievgls of confinement., i'GFhe dependence of on o, (4.1) can be viewed to reflect the

0=<0,=<150 MPa. Surface energy per unit arga,used here is_jncrease in the energy release réigas the local mode-mixity for

assumed to be the same for both the cases and is shown in T, Erface cracking changes from mostly mode | to modé18])
1. The model predictions show significant agreement with thgi, increasing confinement.

experimental results, especially with those obtained by (Fiyy. The model predictions of compressive strength for the carbon/
7). The theoretical predictions agree with the experimental resull§oxy composite used by Parry and Wrongkl] for the cases
given by WW (Fig. 6) for confining pressures8o.<50 MPa. ,_5"andn=4 in (4.1) are shown in Fig. 7. Input parameters for
oo, The experimental restis show considerable scater for cBlg  model predictions. areyo=140Ji, o7 =15 GPa, az
fining pressures 580 .<150 MPa although the samples A, B,:15'58’ anda, =823.6. Comparison between the cases of2

: . . andn=4 shows that as the exponenincreases, the curvature of
and C are made of the same material. It is believed that due to l% failure envelope can be increased and as a result, the model
fiber volume fraction(36 percent a host of failure modes might P !

. =" prediction for longitudinal splitting stays close to experimental
have occurred under the confining pressure5@=150 MPa in result in wider range of confinement than the prediction based on

the experiments by WW, and this could explain the scatter Yhallern and exceeds the experimental value at high confining

experimental results. Alsa;;=36 percent happens to be in thedaressures where formation of kink bands, instead of longitudinal

(rje:)r;gﬁ] gtfet(rjar;(seltligrrl ch(’) Tigﬁ%ﬂ?ﬁ%&g% rl;nrslatlﬁtciinreg(l)c;nEt? ||nat§Sr;a seplitting, is observed in experiments. This observation implies that
9 g pitting 9 if y increases as a function ef; and its dependence an. is

vinylester composite discussed above. Although the material 'ﬁong i.e.. exponentis large, longitudinal or axial splitting can

different, the geometrical interpretation about the increase of t . - .
area of the matrix failure still holds in this case. Therefore, th ¢ observed up to certain levels of confinement and is suppressed

large scatter in compressive strength might be a result of the chgtr-hlgh levels of confinement where other failure modes such as
2 ” ; Rk band formation should be considered.
acteristic of the transition zone between low and high volume
fraction of fibers.

In the present model, the only adjustable parameter is surface

energy per unit areay, which is not readily available for the Acknowledgment
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4 Conclusions and Discussion .
Agpendlx

An energy-based model has been developed for predicting th ] ) ]
compressive strength of unidirectional fiber-reinforced compositesFollowing Hashin and Rose16], the expression for the effec-
which fail by |0ngitudina|(axia|) Spl|tt|ng The fo”owing conclu- tive moduli of the unidirectional fiber CompOSItﬁl-flber direc-
sions are based on the analytic res(®sl) and(3.2): tion) ET , v3;, K33, andGj; are given below:

(i) The critical stress for longitudinal splitting is proportional _ _
to Jy/a and this parameter is the most dominant term in the E*—(,.E.4+v E En(D1~DaFy) +E(Do~DaF)

L . . . 1= (viEf+vmEm) )
determination of the compressive strength of fiber-reinforced Em(D1—D3)+E{(D,—Dy)
composites. According to the present model, composites with El.to E-L
larger fracture energy and small fiber diameters would result in x _ UIEE1T UmEmt2Vm

E =
higher strength. 2 yiEiLgtunEnl,

(i) The degree of the anisotropy plays a significant role and
the effect of fiber volume fraction appears only in this context in 5= Ky, Kf(l+2vmvf)+2KmeUm;
influencing the compressive strength. Kiom+Km(vi+2vy)
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S. Krishnaswamy1 The problem of quasi-static crack propagation in a three-point bend specimen containing
Associate Professor, an initial crack that is parallel to and offset from a bimaterial interface is considered. An
Mem. ASME approximate dislocation-based fracture model is used to identify conditions under which
Department of Mechanical Engineering, such cracks are attracted to or repelled by the interface. Possible configurations
Northwestern University, (material/geometry) where such subinterfacial cracks experience pure mode | conditions
Evanston, IL 60208-3030 are determined. Experimental results are presented showing quasi-static crack propaga-
e-mail: s-krishnaswamy@nwu.edu tion of subinterfacial cracks for three regimes: (attractive) into the interface; (repulsive)

away from the interface; as well as (equilibrium) parallel to the interface.
[S0021-89360)01903-9

1 Introduction vicinity of the subinterfacial crack. Early studies by Erdoga]

Interfacial and subinterfacial cracks in bimaterial systems are %?ve outlined the analysis methodology that we shall adopt here.
Y The basic question that we shall attempt to answer in this work

interest due to their relevance to fracture and failure of COMPOS|iE is: For 4 three-point bend bimaterial PMMA/AIB061 speci-
structures and microelectronic devices. There are several theofgkn containing a subinterfacial crack of initial lengta™that is

ical studies on interfacial crack§1-11]) and subinterfacial narajiel to the interface but offset by a distance”“are there
cracks([12-15), which have dealt with such issues as the natuigecific locations ti/a” at which the subinterface crack will ex-

of the CraCk'tlp smgularlty and pOSSIble crack-face contact. Crairience pure mode | conditions? If so, such a crack can be ex-
propagation in bimaterial systems occurs alwégs interfacial pected to grow parallel to the interface at least incrementally. We
crackg or mostly always(for subinterfacial cracksunder mixed- shall call such positions “equilibrium positions” for the subinter-
mode conditions. Mixed-mode crack propagation even in homtacial crack. This is essentially the same question as the one raised
geneous linear elastic media is still not completely understo@y Hutchinson, Mear and Rid&4] with later extensions by Yang
([16)]), even though the theoretical basis for mixed-mode crack-tgnd Kim[35]. The answers that were provided by the Hutchinson,
stress states is well laid out in terms of classical linear elasfidear, and Ricg34] analysis are applicable to the center crack
fracture mechanics. It appears that at large mode-mixities the stggometry, and by an argument of far-field dominance ofnéer-

dard fracture propagation criteria based on maximum energy facial crack-tip field, to other situations where such dominance is
ergy density all deviate from each other and also frofge Sufficiently small and the planar extent of the specimen should

experimental datésee, for examplg17—19,16,2Q Post-mortem be sufficiently large so that one can assume that there are dis-

examination of the surfaces of mixed-mode fracture in essentiaff/c€S &t which the subinterfacial crack can be thought of as being
sentially on the interface.

brittle materials has indicated that at large mode-mixity, the cra Unfortunately, for the configurations pertinent to this study the
surface is rougher than at small mode-mixity, suggesting a chan Bvalence of a far-field interfacial crack-tip field cannot be as-

in crack propagation mechanisms and in the fracture process z Ofhed. In this work, we therefore attempt to answer the above
([16’211).' L . . uestion both theoretically using dislocation-based fracture mod-
The situation is much more complex for interface and subinteis anq finite element numerical simulations, as well as experi-
face cracks because the mode-mixity here arises not only fr(?ﬁbntally using optical interferometry.
geometric conditions but also from material mismatch. Extensive |n section 2, details of a simple analytical model are discussed
studies on interfacial crack propagation dealing with fractumgr the three-point bend subinterfacial crack geometry following
toughness issues, dynamics, and material nonlinearity have bgg# lines of Erdogal5]. Relevant details of a full-field optical
undertaken over the past decef22—33). measurement techniquéPolariscope/Shearing  Interferometer:
The focus of this paper is much narrower than the issues stRS|) that is used in this study are described in Section 3. Quasi-
ied by the researchers cited above, and it concerns the propagasitaiic subinterfacial crack propagation experiments are described
of subinterfacialcracks that are off but close to an interface bein Section 4. Three-point bend specimens made of PMMA/
tween two dissimilar linear elastic materials. The theoretical bas?d 6061 bimaterial systems were loaded to initiate and propagate
for this is rather straightforward as these subinterfacial cracks agbinterfacial cracks. The experiments indicate the conditions un-
entirely in one material, and therefore their propagation should Béer which a subinterfacial crack is attracted to or repelled by the
governed by the concepts of classical linear elastic fracture nigterface, and also demonstrate that, under certain circumstances,
chanics fohomogeneoubodies, at least as long as the crack dodbthe crack happened to be initially located at the right position, it

not run into the interface. The effect of the second material c&R2Y €ven grow in its own plane parallel to the interface. The

only be to alter the stress state, and hence the mode-mixity, at §i@erimental results are compared with crack trajectories pre-
dicted by finite element simulations, and with the results of the

1To whom correspondence should be addressed. dislocation-based fracture analysis.
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goal is this: determine any possible “equilibrium” positiord™ is virtually impossible to experimentally test, the three-point bend
(distance between interface and craokthe subinterfacial crack specimen is very easy to test but much harder to analyze. There-
of length “a” in a given three-point bimaterial speciméaf rel- fore an approximate method of analysis is described here, the

evant in-plane dimensionW” assuming that all other dimensions "~~~ . o i . i
are much greater tham which leads to a pure mode | stress statevalidity of which is verified experimentally. The solution to the

The “characteristic distances” at which any such equilibrium poactual problentFig. 1(a)) can be obtained by superposition of the
sition is obtained will be denoted nondimensionally dy/a. following two subproblems(a) a beam in three-point bending but
Unlike the center crack specimen which is readily analyzed babntaining no crackFig. 1(b); and (b) a plate with no far-field

— PMMA Ry=PLy(L;+Ly) T PMMA PMMA
y y y
Ly
e x — X Fe K
B s
Ly
Al6061 | Al6061 Al6061
—- NN Ry=PL (L L,y -
w
(@) ® ©

Fig. 1 Three-point bend PMMA /Al 6061 specimen: (a) actual specimen =(b)
beam without crack and only applied load  +(c) plate without applied load and
only dislocations to cause crack

PMMA PMMA

YA y

Al6061 Al6061
(@ (b)

0, 0,

T 'Sl
x=0 \ x=a x=-a \ x=a

imaginary crack line ny x) imaginary crack line

o, (%) / ——————y

Xy

— e P - -
- - - < 44— -— - — - - — —
—~

x=0 ¥=4 x=-a x=a
(0) (d)
Fig. 2 Modification of edge crack problem to center crack problem: (a) edge

crack model, (b) center crack model, (c) traction stresses of edge crack, (d)
traction stresses of center crack
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Fig. 3 The traction stresses at imaginary crack line locations from Bernoulli-
Euler beam bending analysis

loading and containing dislocation distributions to create the crack the expected crack-line for the case wHep=0.15m, L,

by nulling out the appropriate crack-line traction stresggéyg. =0.1m, w=0.15m, s=0.01m and crack lengtta=0.07 m.

1(c)). The first subproblem is easily analyzed using Bernoullifhese parameters correspond to specimen Ill discussed in Section
Euler beam theory. The second subproblem, however, is a #itNote that the Bernoulli-Euler beam theory is expected to pre-
more complicated because it needs to be built up from the solutigit the normal stress distribution very well, but is not expected to
for a single edge dislocation off the interface between two bimg\_;oduce an accurate measure of the shear stress distribution.

- P . While, second-order correctiorisuch as the Timoshenko theory
terial quarterspace<[36]). Such a solution is very hard to obtain ; LA
primarily because of the difficulty associated with obtaining may be used to get a better estimate of the shear stress distribu

; . 2 fon, this is not essential for our purposes as the results of this
traction-free edge plane. In any event, the traction-free condltlogﬁa|ysis will prove to be adequate.

on the other free boundaries will never be exactly met in a finite ) ] o
geometry. Because of these limitations, the approach that will be2.2 Subproblem (b): Dislocation Distribution. We can
taken here is to obtain the dislocation distributions necessary8W use the traction stresses obtained from subprotinin
create acentercrack in an infinite geometry, but using the craciéubproblem(b) to null out the tractions along the subinterfacial
line traction stresses obtained from subprobl@nappropriately crack line. Using this approach, the problem of the subinterface
extended“mirrored” ) for a center crack as shown in Fig. 2. Thecrack results in a system of Cauchy-type singular integral equa-
rationale for this is that the stress field for an edge dislocation fafi@ns for the dislocation distribution densiti€<.5])
as 1f with distancer, and therefore the crack-tip behavior is a , a
AIS@Neer, . . avior 15 2B,(x')

therefore primarily going to be dictated by the dislocation distri- — Tdx'+
butions near the vicinity of the tip. That the “mirrored” center
crack specimen will always have traction stresses along the mid- a ,
line x=0 (which is the edge of the real specimetue to the , ’ r_ ayy(x',d)

) ) g - + B, (X" )K (X, x";d)dx —_— ?3)
dislocations that straddle the midline means that our approximate D
analysis will be in error in some significant ways. Whether our

X=X 7aBy(X YK 11(x,x";d)dx

—a

approximate solution is acceptable or not will be determined ex- a 2By(x’) |, a . . .
perimentally(Section 4. = ax’ + 7aBy(X JKo1(x,x";d)dx
2.1 Subproblem (a): Beam Analysis. From a Bernoulli- a (x'.d)
Euler analysis of beam bendirigig. 1(b)), the traction stresses on + J’ B, (X ) Ko x,x":d)dxX’ = — Ixy\ X, ()
the expected crack-line are given by “a D
PLy where B,(x") and B,(x") are glide and climb edge dislocation

ayy(x,d)= ; for s>d

12 w
L,+L, W} [Lo=s+d] 7% density functions along the crack lixé=—a to a; a,(x’,d) and

(1) oyy(X',d) are the traction stresses from subprobl@nalong the

PL, [ 12 w . : . ;
_ L,+s—d]|=—x|: for s<d: prack line; and? and the kernel functlonl{ij(x,x ;d) are given
L,+Lsy hw? [La ][2 X in the Appendix. In order to have uniqueness of solution, the
PL, 1 dislocation density functionB,(x’) andBy(x") must satisfy
2
Oyy(X,d)=— —: for s>d a
L1+ LZ hw (2) j By(X,)dX,ZO (5)
. PL; 1 ¢ d: -8
T AL hw oSG a
. i . Bx(x")dx"=0 (6)
where the plate thicknesslis Figure 3 shows the traction stresses -a
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1.75 - 0.6 and the integral is over any lodpenclosing the right crack-tip. It
e K is seen from the above that whirp =0, the crack deflection force
173 ! oot! 0.4 Fp is zero, and the crack can be expected to grow in its own plane
in pure mode |. However, whelg,,>0, the deflection forc& is
negative(i.e., directed along the negatiwedirection in Fig. 2,
and the crack can be said to atractedto the interface. Contrar-
ily, when K;;<0, the deflection forcé, is positive (ie directed
along the positivey-direction, and the crack igepelledby the
interface. Note thaK, is always assumed to be positive in order
for the crack to grow.
-0.4 The results of the above analysis are given below for one par-
— K, ticular case when:L;=0.15m, L,=0.1m, w=0.15m, s
o o o os ol =0.01m and crack lengta=0.07 m for PMMA/A16061 speci-
' ' ) ' ) ' men Il (discussed in Section)4The stress intensity factors and
(@) dla the corresponding crack deflection forces are shown in Fagby}
respectively, for various crack positionsd/a.’’ It appears that

30 7 20 the characteristic distancg*/a is around 0.25 wheré&, and
——F hence the deflection forde, vanish for this configuration. In this
Bl 15 case, if the subinterfacial crack happens to be farther away than

%\ I,.v"" the equilibrium position, i.e., d/a)>(d*/a), we see that the
R

0.2

-0.2

d*fa

[, () (au)d)/ ™

K /[P/(hw) (1t a)'?]

10T

% crack deflection force=p<0, and so such a crack-tip will be

attracted to the interface. Conversely,df &) <(d*/a), the crack
deflection forceF,>0, and so the crack-tip will be repelled by
the interface.

a

Awd /a4

d*a .

27

FE/ (P/h)?

A

26
“@M
25 e, .5

— 5 3 Shearing Interferometery

0 01 02 03 04 05 06 Shearing interferometric techniques are useful in mapping
d/a stress-field distributions in optically isotropic materiésich as
(b) polymethylmethacrylate—PMMAor opaque materialésuch as
) ) ) i aluminum where photoelasticity is inapplicable. See Tippur,
Fig. 4 Stress intensity factor and crack extension and deflec- Krishnaswamy, and Rosakjg0] for details of a shearing tech-
giocr:efgrges for the PMMA /A1 6061 bimaterial specimen Il as pre- nique called Coherent Gradient Senf06S); and Lee and Krish-
y the model . ; .
naswamy[41] for a combined Polariscope-Shearing Interferom-
eter (PS). The optical layout and the schematic of the shearing
) interferometric mode of the latter PSI device are shown in Figs.
which assure crack closure at the j{87]). The above set of 53 ). A5 mW HeNe laser is used as the coherent light source. A
Cauchy-type singular Eq$3)—(6) is solved using the numerical quarter waveplate is used to circularly polarize the beam. A set of
method developed by Erdogan and Gui@d] and the details of mjcro-objective lenses, spatial filter, and beam collimator, are

this are spelt out in_LeB3_8]- o ) ~used to obtain a clean and collimated plane wave. The beam then
Once the dislocation distributions are obtained, the stress int§exsses through the transparent PMMA specimen under test. The
sity factors can be calculated directly frofi89]) transmitted beam is then sheared by a specially designed prism as
2 shown in Fig. Bb). The specially cut prism is made of birefringent
1 . .
K =— [ma[ JaZ—x2.B,(X)],_. 7) calcite and generates two orthogonally polarized parallel and lat-
N [ yX)x-a @ erally shifted copies of the input beam. These two beams are made

to interfere by use of an analyzer. The resulting interference pat-
2y tern produces fringes related to the gradients of the stress-induced
K :ﬁ V[ Va?=x*.B,(X) ]y . (8) phase shift in the transmitted beam. For optically isotropic mate-
rials such as PMMA, the stress-induced phase retardation is inde-
wherep, is the shear modulus of material “1” and the materiapendent of polarization, and the total phase retardatignat any
parameterx; involves Poisson’s ratio and is defined in the Appoint due to transmission through the specimen is related to the
pendix. stresses at that point throug#0])

A dislocation in the presence of a stress-field experiences a
force on it and it can be show(l39]) that the forces on the
dislocations(that form the crackdue to the applied far-field load
are directly related to thé-integral, which can in turn be related
to the stress intensity factor through

2mhc
q)sp(X:Y): T{0'1+0'2} (11)

whereh is specimen thicknesg, is wavelength of the laser beam,

c is a stress optic constant of the optically isotropic PMMA ma-
au; 1tk . terial, ando; and o, are in-plane principal stresses.

Fe=J= g Wdy-Ti——ds|= (Ki+Kjp)  (9) As discussed in Lee and Krishnaswaifd], the interference

I
o 81 pattern produces bright fringes in regions where
u; ) 1+k ch Ao+ 0y)
Fp=Jy,=— Wdx+Ti—ds|=— ——K|K;. (10 ZUAX. 2T T2
D=y ér oy G, 1 (10) x AX X m. (12)

Here Fg is called the crack extension force aRg is called the Heremis an integer representing the fringe order, and the spatial
crack deflection force and the positive signsFef and Fp are shearing amounA X (induced by the prisinis along the global
taken such that the forces on the right crack are along the positXalirection as shown in Fig. 6Note that for convenience the

x andy-directions respectively. Also in the abow&fis the strain origins of the coordinate system are shifted in relation to the one
energy densityT; are the tractions, and; are the displacements used in the analysis Section. 2
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Beam shearing Spatial Filter the initial crack line parallel to the interface. It is therefore con-

SCD camera el N Cotimator | venient to cast E(13) in terms of the global coordinates; that is,
:]:I : :]:I}D as functions of ,6) where 6= 6* +¢. One then obtains the
i /l fringe relations by a direct use of chain differentiation:
(a) Teleconverter Analyzer Specimen 1/4 wave-plate ND n—3 n—1
(=312 Rak,)co - 60— -

h -1
I ¢ nE::O(n ) N2 [n=3 n—1
+Im(k,)sinl —— 60— ——o¢
;;L 2 2
.
m 14
=% (14)
Extraction of the stress intensity fact@nd the other higher order
Gt ise termsk,) from an experimental fringe pattern proceeds as follows.
P The crack origin, and the kink angle are identified, and the
fringe locations (, #) of various fringe orders are digitized. The

| experimental data are then used in an over-deterministic least-
@ Special Wollaston Prism squares schen@42)) using Eq.(14) to obtain thek,’s. Details of
the data analysis procedure including examples illustrating the
CCDcamera  Analyzer (45 deg. polarizer) accuracy of the experimental procedure are given in Lee and
(b) Krishnaswamy[41].
Fig. 5 (a) Optical layout of the shearing interferometric sys- 4 Experimental Results of Quasi-Static Propagation

tem, (b) schematic of the shearing interferometer We shall now present selected results of subinterfacial crack

propagation in several PMMA/A16061 bimaterial three-point
bending specimens. The relevant material properties of PMMA
Subinterfacial crack-tip stress states can be expected to be ad A16061 are given in Table 1. To avoid the use of a third
ymptotically the same as that for a crack which is entirely in addhesive material to bond the two halves together and to make a
isotropic homogeneous medium, at least as long as the crack deeng interface, methylmethacrylate monomer was used. A sharp
not run into the interface. Since in general the propagating crackack parallel to and offset from the bimaterial interface was ini-
path can be along an arbitrary direction, it is convenient to defiti@ted by gently driving a razor blade inserted at the end of an
a local(variable coordinate systerfx,y) which is instantaneously edge notch. The residual stresses along the bimaterial interface
aligned with the curved crack patFig. 6). The local coordinate due to heat generated in the curing process were optically ob-
system is rotated with respect to the global system by the crag&rved to be negligible. Qualitatively, we do not expect residual
kink angle ¢. The in-plane stresses near the subinterfacial cracktresses to play a significant role in these experiments. Three dif-
tip are then asymptotically given by ferent loading conditions were used to generate different initial
mode-mixities for the subinterfacial cracks. A pneumatically
- - driven loading machine was used to increase the appliedRaad
{Re(kn)giin(e*)Jr'm(kn)‘f”n(e*)} order to initiate and cause to propagate the initial subinterfacial
(13) crack. The loading rate was about 1 N_/sec. A video recorder op-
) ) erated at 1000 frame/sec was used to image the crack propagation
where ¢ is the polar angle measured with respect to the locghd to obtain shearing interferometric data as described in Section
x-axis; r is the radial coordinate with respect to the instantaneogs |n all the experiments reported here, the crack propagation
crack tip;k,, are complex amplitudes of whidh=K =K, +iK; is  speed was less than 1 mm/sec in the region of interest. Therefore
the complex stress intensity factor whefg and K, represent inertial effects were deemed negligible.
mode | and mode Il components, respectively; @ig(6) and The analysis for extracting the stress intensity fastdrom the
&{}n(ﬁ) are dimensionless functions that are completely knowexperimental results is based on a linear elastic assumption of the
(listed in full in Lee[38]). Experimentally, however, the fringesunderlying stress fields. The size of the plastic zone as the crack
are related to the globad-gradients of the sum of these stressedpitiated and propagated was estimated to be much smaller than
since the shearing prism is fixed so as to provide shearing aloihg other relevant geometric scabgsd Numerical simulations of
the experiments were therefore done assuming quasi-static, linear
elastic conditions. The finite element crack propagation program
FRANC2D ([43]) was used because it has built-in fracture criteria
and automatic remeshing as the crack propagates.

4.1 PMMA/A16061 Bimaterial Specimen |. Specimen |
had the following geometric parameters:;=150 mm, L,
=150 mm, w=150 mm, s=10 mm, d=10 mm, plate thickness
h=9 mm, and initial crack lengt=30 mm. This configuration

< =D

O'ij(r,a*):nzo \/E

Table 1 Material properties

Young's Poisson’s

Modulus Ratio Stress-Optic Constant
Material Properties E (GP. c
@ (b) P (GPa ’
PMMA 3.24 0.35 0.92310 °mN
Fig. 6 Global and local coordinate systems for a propagating Al6061 69 0.3 -

crack
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is symmetric with respect to the specimen but not material geol
etry. As the applied loa® was increased, the subinterfacial cracl
initiated and began to propagate initially outward from the bimé
terial interface, subsequently finding a path that is almost paral
to the interface. Figure(@) shows a photograph of the fractured

specimen indicating the crack trajectory. Superposed on this is 1 i'nitial sk i -
w= mm

numerically simulated crack path obtained using the maximu

tangential stress criterion for crack growth in a finite elemet

simulation of this specimen. We note two things:even though

the load configuration for bimaterial specimen | is symmetric wit Al6061

respect to the specimen geometry, the crack propagates alon
curved path due to mode-mixity arising from the material mis
match andii) the maximum tangential stress criterion used in th
numerical simulation captures the crack propagation path for tt
case extremely well. L=3150 o

Figure 1b) shows a sequence of shearing interferometric in
ages as the crack initiates and then propagates. Analyzing th
fringe patterns as set out in Section 3, the magnitude of the str

intensity factor]K |= \/KzI + KF, is observed to increase during thg
initial crack propagation phase for up to about 4 mm of growf
(Fig. 7(c)). The fracture toughness value for this subinterfacig
crack propagation case appears to be aroune-1.2 M-Pa/m
which is close to the measured value for the fracture toughness
homogeneouBMMA as one would expect. The phase anglé&of
defined as¢=tan (K, /K,) starts around—15 deg due to the
large mode-mixity arising from the material mismatch. This larg
negative phase angl@egativeK,,) leads to a positive“repul-
sive”) crack deflection forcd-p, resulting in the crack initially
propagating outward from the interface. The fact tkaf (or
equivalently the phase angle of the stress intensity fa€jorap-
idly decreases and is minimal after about 5 mm of propagati
demonstrates that the subinterfacial crack seeks to propag
along a path that leads to zero mode I, at least for trajectories t
are sufficiently far from the bimaterial interface. This is consiste
with behavior expected of cracks in homogeneous elas
materials.

4.2 PMMA/AI6061 Bimaterial Specimen Il. Specimen I
had the following geometric parameterd:;=50mm, L,
=150 mm, w=150 mm, s=10 mm, d=10mm, plate thickness 1.5 regreepeemp e e e e e e e e e et et 20
h=9.5mm, and initial crack lengta=30 mm. In this case, the 3 !
crack first propagates inward, contacts the interface, and sub . —— K|
quently grows along the interfad€&ig. 8(@)). Superposed on the L2} e e 10
experimental data is the path predicted by a finite element sim 1
lation using the maximum tangential stress criterion as befor
The numerical path is also observed to initially turn towards tr
interface, but the actual crack trajectory itself does not match ve
well with that observed in the experiment. Further mesh refin
ment does not improve the simulation, and the reason for t
discrepancy therefore lies elsewhere.

The shearing interferometric fringes for this case are shown 0.3F |
Fig. 8b). Analyzing these to extract the stress intensity factors -
before, we find that the mode Il componentkfstarts out very 0 SN B ST R 40
large (Fig. 8(c))(the initial phase angle is around30 deg at ini- 0 5 10 15 20
tial propagationand does not disappear as the crack runs into tl crack propagation (mm)
interface. The effect of this positiy€, (negativeFp) is to cause (o)
the crack to be attracted in to the interface. While the overall
behavior is as expected, the actual divergence of the experimerfigl 7 (a) Comparison of crack propagation trajectories in
path from that predicted numerically can be explained from sonfMMA/AI 6061 bimaterial specimen |, numerical simulation su-
of the interferometric fringe patterns in Fig($§ that are shown Perposed on the experimental results;  (b) shearing interfero-
zoomed in Fig. &). These fringe patterns clearly indicate that if"etfic fringes for PMMA /Al 6061 bimaterial specimen I (c)
this case where the mode-mixitgmainslarge during propaga- measured stress intensity factor and phase angle versus crack
. . _propagation distance of PMMA /Al 6061 bimaterial specimen |
tion, the crack surfaces contact each other over macroscoplcéﬂiy
significant distances behind the crack front. The simulations, how-
ever, do not capture crack contact. One of the major effects of
crack flank contact should be an apparent increase in the fractureler predominantly mode | conditions. A post-mortem examina-
toughness attributable to an increase in energy dissipation dueitm of the crack surfaces showed that these were much rougher in
friction between the crack flank surfaces. This is reflected in Fithis case(specimen Il than when the mode-mixity was smaller
8(c), where the magnitude of the stress intensity faktas much (specimen ). It is also interesting to note that the crack surface
higher than that required for propagation in homogeneous PMM#ontact is dramatically changed when the crack hits the interface

L2 =150 mm
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Fig. 8 (a) Comparison of crack propagation trajectories in PMMA /Al 6061 bimaterial specimen II; numerical simulation
superposed on the experimental results. (b) Shearing interferometric fringes for PMMA /Al s6061 bimaterial specimen Il.  (¢)
Measured stress intensity factor and phase angle versus crack propagation distance of PMMA /Al 6061 bimaterial specimen
II. (d) Crack surface contacts in PMMA /Al 6061 bimaterial specimen Il. (i), (ii), (i), and (iv) are zoomed images of Figs. 8 (b),
(d), (g), and (i), respectively.

(see Fig. &) (iii) and(iv)). At this point, the subinterfacial crack 4.3 PMMA/AI6061 Bimaterial Specimen IIl. Bimaterial
surfaces actually open out and appear to be no longer in contagtecimen Il had the following geometric parameters:
However, the near-tipnterfacial crack is still expected to have =70 mm, d=16 mm, s=10 mm, L,;=100 mm, L,=150 mm, h
some contact region, but this is beyond the field of view of this 9 mm. The numerically predicted crack growth path using the
experimental setup. maximum tangential stress criterion is straight for this case, and
It must be confessed that the interpretation of the experimenthls compares well with what was observed experimentally as
data in terms of the asymptotic crack-tip field fohamogeneous shown in Fig. a). Figure 9b) shows a sequence of the interfero-
material becomes increasingly untenable as the crack approaamesric fringe patterns as the crack propagating parallel to the bi-
and eventually hits the interface. The results of this particulanaterial interface. The mode-mixity is observed to be minimal
experiment and their interpretation as set out above should theright from the crack initiation poingFig. 9c). The fracture tough-
fore be viewed at best qualitatively. ness|K| converges to the value for homogeneous PMK&hout
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Fig. 9 (a) Comparison of crack propagation trajectories in

PMMA/AI 6061 bimaterial specimen IlI; numerical simulation
superposed on the experimental results.  (b) shearing interfero-
metric fringes for PMMA /Al 6061 bimaterial specimen Ill. (c)

Measured stress intensity factor and phase angle versus crack
propagation distance for bimaterial PMMA /Al 6061 specimen IIl.

Journal of Applied Mechanics

1.1 M-Pa/m). Despite the fact that this is a bimaterial specimen
with the crack in close proximity to the interface, the phase angle
of K for the whole propagation regime shown remains essentially
around O deg. Due to this essentially zero mode-mixity from the
initial state, the crack propagates almost in a straight line parallel
to the interface. The characteristic “equilibrium” distance for this
specific PMMA/A16061 bimaterial combination and loading con-
dition of specimen lll was calculated analytically as described in
Section 2 to bel*/a=0.25. Note that this agrees reasonably well
with the experimentally measured value a@f/a=0.23, thereby
validating to a certain extent the analytical model.

5 Discussions and Conclusion

Based on the experimental data and the analyses presented in
the previous sections, we can draw the following conclusions:

1 When the initial mode-mixity leads to a negatitg, (a
positive crack deflection forc€p), as in specimen 1, then the
interface repels the crack-tip. Crack propagation therefore occurs
in such a manner that the crack moves further away from the
interface. In the process, the mode-mixity diminishes further, and
the crack eventually finds a path Kf;=0. In this case, conven-
tional fracture criteridfor cracks in a homogeneous materiate-
dict the subinterfacial crack path quite well.

2 When the initial mode-mixity leads to a positi¥g, (lead-
ing to a negativé-p), as in specimen 2, the interface attracts the
crack-tip causing it to grow closer to the crack. While this predic-
tion from the analysis is seen to hold, the numerical simulations
for crack trajectories using the maximum tangential stress crite-
rion appear to predict the actual crack path poorly. Indeed, part of
this is due to the fact that the crack flanks contact at these large
mode-mixities, a factor not taken into account in the conventional
criterion. Analyses that allow for contact and include energy dis-
sipation mechanisms involving frictional contact may be neces-
sary to get a better handle on the crack behavior in this case.

3 Itis possible to findnacroscopically significargquilibrium
positions for certain material/loading combinations for which a
subinterfacial crack experiences zero mode-mixity. Note that by
macroscopically significant, we mean thét/a is neither too
small that a far-field interfacial crack-tip field can be expected to
prevail (interfacial limit), nor too large that the bimaterial inter-
face is too remote to be “seen” by the cradkomogeneous
limit). It was shown that a subinterfacial crack could actually
grow parallel to the interfacéand in reasonable proximity to)it
for some significant distance of propagation. An approximate and
simple dislocation/beam theory fracture model was shown to pro-
vide a reasonably good estimate of the equilibrium position.

The results of this work are of course specific to the situations
studied. The larger utility of this work is in terms of what the
results suggest:

(&) It is possible to obtain reasonable estimates of equilibrium
positions, and crack attractive and crack repulsive zones for a
subinterfacial crack using simple beam models in a dislocation-
based fracture analysis.

(b) Propagation of cracks initially located in crack repulsive
zones can be quite well described by conventional criteria such as
the maximum tangential stress criterion that are used in available
fracture codes such as FRANC2D.

(c) Propagation of subinterfacial cracks initially located in
crack attractive zones, are likely to be less successfully modeled
by conventional criteria as the crack-tip gets pulled closer to the
interface.
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Theory of Anisotropic Thin-Walled
Beams

V. V. Volovoi Asymptotically_correc;, linear _theory is _presented for thin-walled prismatic bee_lms_ m_ade

o of generally anisotropic materials. Consistent use of small parameters that are intrinsic to
the problem permits a natural description of all thin-walled beams within a common
D. H Hodges framework, _regardless_of wh_ether crqss-sectional_geome_try is open, closc_ed, or strip-like.

o Four “classical” one-dimensional variables associated with extension, twist, and bend-
ing in two orthogonal directions are employed. Analytical formulas are obtained for the
resulting 4x4 cross-sectional stiffness matrix (which, in general, is fully populated and
includes all elastic couplings) as well as for the strain field. Prior to this work no
analytical theories for beams with closed cross sections were able to consistently include
shell bending strain measures. Corrections stemming from those measures are shown to
be important for certain cases. Contrary to widespread belief, it is demonstrated that for
such “classical” theories, a cross section is not rigid in its own plane. Vlasov’'s correc-
tion is shown to be unimportant for closed sections, while for open cross sections asymp-
totically correct formulas for this effect are provided. The latter result is an extension to
a general contour of a result for I-beams previously published by the authors.
[S0021-893600)03003-9
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1 Introduction two-dimensional equations on a cross section. A development of a

The following discussion is restricted to the theory of prismati%%rggeggg] solution of this problem is presented in Cesnik and
o :

beams where the three-dimensional constitutive law and stra - L . .
displacement relationships can be considered linear. Any beamAppIylng the variational-asymptotic procedure to thin-walled

; - L . . : Closs sections where another small parameter exists, namely
theory is associated with introduction of variables which depend
only on the coordinate along the beam axis. For a general typef1 (Whereh is a wall thicknesk allows one to start with shell
deformation at least four such one-dimensional variables havetk@ory rather than three-dimensional elasticity. Rather than having
be introduced: extensional, torsional, and two bending variablts solve a two-dimensional problem over the cross-sectional
(corresponding to deformation along two orthogonal direclionsplane, one instead solves a one-dimensional problem over the
The corresponding one-dimensional governing equations are lgngth of the thin walls. This dimensional reduction can be also
coupled for isotropic beams with doubly symmetric cross sectiomenducted in another way: the asymptotic procedure with respect
and are given by Euler-Bernoulli theory for extension and bending £ can be applied directly to the two-dimensional cross-sectional
and St. Venant theory for torsion. If one wishes to extend thisroblem that results when starting with three-dimensional elastic-
theory to composite beams, the governing equations becoing Both approaches lead to the same final results, but the latter
coupled due to the appearance of off-diagonal terms in the cropsecedure is more computationally involved.
sectional stiffness matrix. This»4 stiffness matrixC,;, charac- The former procedure was used in Berdichevsky ef4l.to
terizes elastic properties of the beam. Then, the strain energy pptain analytical solutions for closed sections. The resulting con-
unit length is expressed in terms of the four one-dimensiongénient cross-sectional stiffness formulas published in that paper
strain measures as are presently widely used in engineering community. Although
2F yassica= @aCanay Where aT={U} U4, U%,60'}. (1) shell bending strain measures were neglected in that paper, these

hi I hi | f . - for most practical purposes do not affect final stiffness results.
For thin-walled beams this problem was first posed in Reissngbyever, as shown below, for certain material properties the de-

and Tsai[1]. However, the approach employed therein led to Gation of their results from the asymptotically correct results
complicated set of equations, especially in the case of closed crg§gnt pe significant.

sections. The solution of those equations was presented only for oncerning the application of the variational-asymptotic

special type of three-dimensional constitutive equations. method to beams with open cross sections, an I-beam was viewed
The introduction of the variational-asymptotic method in consg an assembly of strips in Volovoi et F5]. Asymptotically cor-

text of anisotropic beams Berdichevsig] allowed the treatment ot formulas were obtained therein which account for Viasov's

of this problem from a different perspective: beam theory gy rection. Those results are generalized here for beams with ar-
obtain three-dimensional elasticity without making aay hoc bitrary open contours.

assumptions using the small parameier1, wherea is a char-
acteristic dimension of the cross section &gl a the wavelength
of deformation along the beam reference line. For a geribrsl
not thin-walled cross section the problem is reduced to a syste;m  Present Approach

of Beams are considered thin wallechif€a,R whereR is a char-

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF acteristic radius of Curva.ture of the midsurface. No assumptlons
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E/J.333E)\333
where H = E+33— —gTE

Eaﬁ33Ep,333

GPr=E*Pr3— T (7)

For the following derivation it is convenient to rewrite E&)
as
2E ghei= 41Qi b+ 20 S; b+ ¢iPij b5 8

where 'PTE{Vllthll:hPlz}v and ¢T={y12,722,hp22l; i
=1...3 and X3 matricesQ;;, S;;, andP;; are corresponding

combinations oEZA?, ESL7?, andEfPY?

X4, Uq, Vyq In the derivation below it is the axial coordinatg that is
distinct from the other two, so it is now convenient for Greek
Fig. 1 Configuration and coordinate system indices to vary from 2 to 3. The variational-asymptotic method

Berdichevsky[2,8] is used in what follows. While we avoid a
detailed discussion of this method, sufficient information is pro-
vided here to facilitate understanding of the derivation. We are
using the term “asymptotically correct” concerning an approxi-
()= E ()= & mate solution to denote its agreement with the expansion of the
ds dx, exact solution to a specified order in terms of a specific small
. . parameter. It is clear that any theory which is not asymptotically
T=T= XX F X3Xg correct will certainly fail to achieve the accuracy of one which is.
N=7XX1=X3Xy ™ XoX3 @) Setting up the Problem.Since only statics is considered, only
the strain energy and work of external forces are present in the
total functional. External forces are considered slowly varying so
Fa=nN-r=XsX3—X3X that our minimization is not affected by those forces. This leads to
o Lo minimization of the strain energy density given in Eg). with the
R=Xz/Xs=—X3/%;. strains given by Eqs(4). Next, this functional is represented in
Curvilinear displacements; are expressed in terms of Cartesiaefms of a series with respect to small parameters. A recursive
displacementsi; as procedure is invoked when perturbation of the previous approxi-
mation is used to obtain the following approximation. From this
v1=Up point of view “classical” approximation corresponds to the first
3) (main) nonvanishing terms in that series.
In our case there are two small parametérsand E These
U3= UyX3—UzX, parameters are considered independent: for a given order of terms

Shell strain measures are taken from the works of Kdigr with respect to? we sort out the terms with respect ans well.

and Sander§7], which for cylindrical shells yields The small parametef enters the problem from the observation
thatX,le)T< and X,2~§ for any quantityX.

I’T= T'r:).(2X2+X3).(3

Vo= UZ).(2+ U3)'(3

Y11=V11 P117=U311
“Zeroth” Approximation. This is a starting point of the recur-
%) sive procedure. All terms that contain the small paramgtarthe
functional are set to zero. The resulting functional is degenerate
v v anc_I the gener_al solytion for _its kernglull space is fo_und. This _
Yor=Up ot —  Poy=Ug 29— (_2) . defines one-dimensional variables. In our case setting all terms in
“ R ’ R 2 Egs. (4) containing derivatives with respect to a “slow” axial

Here y,z andp,z are the extensiondimembrang and bending ;ﬁ;g%ﬁ;ﬁggzrfob;n expression for nonzero strains of “zeroth
0

strain measures, respectively. Then, the strain energy density
the shell has the form 1
2y1=v 12 P12= IR U12

1
27157015 V21 p12=U3 10T IR (v12=3v29)

2Eshe|l= h EZB)@’)’aﬂ‘}/'yé—i_ h3EgBYé‘paﬁp75+ 2h2EgbBY§‘Y¢xﬁp75

U3 %]
where Greek indices vary from 1 to E2#?° andEZ#”’ are two- Y22= V22t B P22T U322 E) - ©)
dimensional material constants corresponding to membrane and 2
bending deformation, respectively, aﬁggvﬁ corresponds to cou- Since Eq.(5) is a positive-definite quadratic form of strains, for a
pling between these two types of deformation. These twélisplacement field to belong to the kernel of “zeroth” functional,
dimensional material constants are obtained from the reduc@istrains in Eq.(9) must vanish. It can be directly checked that
three-dimensional material constalt&?”? by use of the relations the general solution of this problem has the form

v1=U; v=UX,+0r,

h/2

1 £[&\2
EeBYd papyd paByd_ — f Daﬁy&{ 1,_’(_) ]d (6 _ . (20)
{ e eb b } h o h'lh g ( ) U3=U2X3_ U3X2_ erT
These constants are, in turn, obtained from the regular threwhereU; and 6=v,/R—uv3, are arbitrary functions ok, . It is
dimensional constants as easy to sedusing Eqgs.(3)) that these one-dimensional variables
EaB33E 033 correspond to motion of a cross section as a rigid badiyx;)
DBy = paBys_ —H . GeBrGYN trans_latlon of a cross sectlon in tlkedirection, andf(x,) is the
E3333 p rotation of a cross section aboxy.
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Asymptotic Re_cursion.Perturbati_on of the o_IispIacement fieldsimilar term in Yap. but multiplied by2. So retaining only the
which was obtained at the previous step is now introducegbaging terms with respect td allows us to discard terms from

namely, Pap- The most obvious “phantom” terms of ordef) ' are
vi=U;+Wy present iny;, which defines the orders for the warping, written
) ) ~ underneath the individual terms in Eq42), and the solution for
U2:U2X2+U3X3+ 0I’n+W2 (11) 6)12

03:U2)'(3—U3)'(2—0I’T+\7V3. W —_U/X (13)
12— aMa

Substituting this displacement field, Ed1), into the strains, Egs.

(4), and, in turn, substituting the strains into Ef), one obtains There might be, however, some other “phantom” terms which

an energy functional. Only the leading terms with respect to small 0 _— .

parameters are retained at this step, and a minimization with pie of order €)%, but still “too large” due to the presence of

spect to; is conducted. As a result of this procedure the pertugnother small paramete}. In other words they are of order

bations @; are found as functions of one-dimensional variables(g)’l. The presence of one of this type of terms is related to a

and their derivatives. fundamental difference between open and closed cross sections. A
In the most general case, deformations due to all four oneenstraint of single-valuedness has to be satisfied around the

dimensional strain measures are of the same ddiroted bye, closed contours of closed sections for certain variables; these con-

a nondimensional constant of the order of the maximum strain étraints do not apply for open cross sections. In particular, this

the beam If this were not the case, any smaller deformationapplies to the single-valuedness ®f. For open cross sections

could be simply neglected in the main approximation. The one;¢’ in y,, is a “phantom” since this term is killed by adding

dimensional strain measures are given in 8g. The only prob- term —r ¢’ to the right-hand side in Eq13). In this case the

lem is to determine appropriate dimensional constants that neeqdgest nonzero terms in the functional that are proportiona! to

multiply these measures to prowdg aterm of the okdehis does /| come from the py, and 6’ ~ £ Integration with respect to

not affectU; which is already nondimensionaAs shown below, circumferential coordinate of Eq13) yields

this constant must be eitharor h, depending on the geometry of

the contour. One can calculate the appropriate order using the s

expression for the one-dimensional energy for the isotropic case, Wy=—U.X,~ e’f r,ds (14)

since all material properties are assumed to be of the same mag- So

nitude, so the order of the one-dimensional strain measures is not o . . .

affected. However, these orders will naturally fall out of our deriwhere the coefficient fod" is called the “sectorial coordinate”

vation. Let us emphasize that the order of perturbations is n@td is given byz(s)=/g rnds. The sectorial coordinate is, in

assumed but determined during the minimization. In fact, it i&ct, a solution of a classical St. Venant torsional problem in the

easily estimated prior to the minimization by reckoning that leaghell approximation. To avoid redefining,, embedded ins,

ing quadratic and linear terms in the functional with respect to th@nstant of integration should be chosen such flaatds=0. It is

unknown perturbation are of the same order. obviously convenient to choose the origin of the Cartesian coor-

21 Phantom Step. There are some terms in the strainimatei in the_ geometric center of the cross section, so that
X,0ds= [X3ds=0.

which are larger in magnitude than the corresponding strain co P .
ponent itself. Those terms are balanced by equally large terms, s;?n the Oth?r hand, fo_r a closed Cross sectigd, In s, is not
that their combination is of a smaller order. We call such ternfs_Phantom™ The requirement of smgle-valqednes.s foy pre-
“phantom” ones. Since at each step of asymptotic procedure orifgms the possibility of d|sp|ac.emen,t f'e.ld as in &) only the
the leading terms are considered, it means that those “phantorfst térm creates a problem, sinf, 6" ds s not zero. As a resul,
terms are minimized to zero. This procedure is often referred {§ms proportional to,¢" do enter the functional, which implies
somewhat cruelly, as “killing” excessively large terms in thethatag’~e. Then the terms witl®’ in p;, will be of ordere(g)
energy. Substituting the displacement field of Edd) into Egs. and can be neglected. Therefore, for the closed sections the
(4), one obtains equivalent of the last term in E¢14) belongs to the next step of
approximation.

There is another “phantom” term that is also of the form

e(2)~1. If a~R then

yu=Ui+Wy,
€ €
2’)/12: X2Ué + X3Ué +rn0/+ \I/\Vl’z +V\A/2’1
(all)"te (al)"le € (a/lh~le (all)e

-1
W3 7’22(\7V27VAV3)*(5 hp2o(Wo ,W3). (15)
722:W2,2+ﬁ
‘ e Thus, minimization of the main terms in the functional simply
. . renders
hp11=h[X3U;—X,U5—6"r .+ W3 1]

€ € (all)e (a/|)2€ \;V

~ 3
Y22=Wp ot R 0. (16)

1 3
hp1o= h[ﬁ{xauly"‘ 01— Wyt — 6 +W3,12_ﬁ (W5,
However, each individual term in E¢16) is not zero, but rather
(all)~te e (@l le e (alle (all)e of order 5(2)’1 and is undetermined at this step. The second
equation for these unknowns stems frpgz and due to Eq(15)

- W, will be provided in the next approximation. & andR are not of
hp22_h(w3’2_ﬁ) : (12) " the same order, then orders §, and p,, for a given displace-
2 ment field are uncoupled, and no “phantom” terms are present. In
€ € particular this is the case when no curvature is preseat R

At this step, terms withp,, 5 do not enter the minimization proce- =«). However, formulas for classical stiffnesses will have the
dure. The reason for this is that, for each ternpjg, there is a same form in both cases, as shown below.
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2.2 Classical Approximation. At this step terms of order b=—Pls. U 19

2 - . . . . ¢| jk ’ﬁk- ( )

€ in the functional are recovered. Displacement field obtained at ‘ . . ’
the previous step is perturbed again. Denoting these perturbati§wbstituting the result into Eqé8), we obtain the final expression

asw;, one can write for the classical strain energy, given by
v1=UrmX U= 07t w, c= f T(Q-SP 19)Tds (20)
U2:Uaxa+ Hrn+\7V2+W2 (17)

whereT is eitherT g, or Ty, depending on the cross section in
U3:U2).(3_U3).(2_ 0r7.+\iV3+W3. ques“on.

This is the most general form of the perturbed displacement field.2.4 Closed Cross Sections.As described abovey;, con-
As described above, the underlined term is present only for opeins nonzero terms of ordef’ neglected so thaw'={U;
cross sections, whil,, are present only ii~R. The latter terms  —x, U’ —x,;U3%,0,0}. Here the 34 matrix T, which connects)
are still unknown, but connected by H36). Substitution of Egs. and «, effectively becomes a column matrif={1,—x,,
(17) into Eqgs.(4) leads to the following expressions for strains: —X3,0}; thea are not arbitrary and proper constraints have to be
imposed if the minimization is conducted in terms of these un-

=U;—x,U’"— 0'n +w . ;
LR AR K 1.1 knowns. Forn-celled sections there arex such constraints—

€ € NTRP™Y /1) . . .
(@Mean (D¢ four constraints per each cell. Single-cell formulas are derived
2y15=1,0" + Wy o+ Wpy below, but the procedure is equally applicable for multiple cells as
s e (all)ealh well. _
Let us consider most general case witena (the other cases
B W3 are analogous with obvious simplifications and lead to the same
7’22_W2,2+E constraints We denoteE=hW;,—hW,/R, so thatZ= ,=¢3.
€ -\ — .
€ Clearly $ p3ds=¢E ,ds=0. Three other constraints stem from
, R R the requirement of single-valuedness of displacements in Carte-
hp11=h[XgUz—xU5— 6"r -+ W3 13+ W3 1] sian coordinates, such thé; ,ds=0. Note the analogy between
€ e (alle (alh)?e the imposed constraints and the introduction of one-dimensional
Or oWy, 3(Wy 1+ W, ) variables Eqs(10). First, OzgSulyzd.s:gSWl,zds, so thatgﬁdbl.ds
hpi,=h| — 0’+?+w3,12+w31127T =40'¢$r,ds. The other two constraints are a bit less straightfor-
ward. Using Egs(3) the following relations can be written for
€ € (all)e (all)2e Wa:
R Wy Wy N e A o A
hpa,=h| | W3 ,— " +| wa =/ I (18) [Wy Ko+ Woko+ Wg X3+ WsXg]ds=0
2 2 (21)
€ € . .
) . [W2 X3+ WoKg— W3 X — W3Xp]ds=0.
Note that the still unknownv, are present along wittv,—they 3€ ’ ’
are distinct, so thaf\v,~w,. This allows one to neglect the Taking advantage of Eq$2) this can be rewritten as
latter with respect to former ip,, 5. Of course, when terms due to W W
~ . . . . . n 3 . = 2
W, vanish, terms due tw, have to be retained—this is the case f Xz(Wz 4= +x3(w3 o —) ds=0
for y,, (or for p, s whenw, themselves vanish—see the previous “ R “ R (22)
step. Underlined terms exist only for open sections while double- W W
underlined term only for closed cross sections. Let us keep in Egs. 3g 5(3(\7\,2 o+ _3) +>'<2(\iv3 ”— _2) ds=0.
i 2 R 2 R
(18) only terms of ordere, denote them with bars and sort the

result into two arrays: those containing the one-dimensional Str%calling Eq.(16), one finds that

measures " ={y;,,hp11,p12) and those with only unknown

qgantitLeS ﬂhichiwill be found in the process of minimization %« Zds=0 or X, hyds=0
(¢"={712,722.hp22}). This provides the motivation for writing = a3 '

stral_n_the energy density in the form E@) and_ resembles th? Therefore, for a single-cell cross section functional to be mini-
semi-inversion procedure that was used in Relssner and[l’]sal. mized has the form

Depending on the geometry of the cross section, the following

distinct cases can be identified. oA % [ZZQ 253 E ZP E o (3 o)
= + 2 ¢p; + ¢Pii i+ +6'r
2.3 Strips and Open Cross Sections. Ironically, strips rep- Lt SRS v 3

resent the only case where all three componenig afe needed. Y
If we align the larger dimension of the strip along with then T2¢3(A Xyt hg)]ds (23)
X3=0 andU; drops from they,,, therefore the largest term with where\ , are Lagrange multipliers; here and belew 1, . . . 4.

Uz comes fromp,;. The double-underlined term in Eq48) is  For multiple-cell cross sections, such a set of four Lagrange mul-
absent(no constraint of single-valuedngsso the largest terms tipliers has to be introduced for each cell, while minimization
with @ comes frompy,. The resulting orders follow aaUj should be conducted over the whole cross section.
~hUj=~ho'~e, s0 ¢ ={U]—x,Uj,hU4,—he'}, or in matrix ~ Then the solution is given by
form = Tguin(S) @, WhereTgy, is a 3X4 matrix. o~ -1 _p-1

Forwope;m?:(rc?ss sectionsszmgoes not drop out from the;; so $i=~Ciga= Pyt where =Py 7S;y. (24)
p11.can be neglected a3~ e. Thus, the known strains dependHere t™={X\;,0,(\ ,X, + A)}=T(S)\. We can rewrite Eqs(24)
on the one-dimensional strain measures #S={U;—x,U}; explicitly in terms ofa and\, yielding

—x3U3,0,—h@'}, or in matrix form,§=T,pe(S)a. - _15

! L Sy open i=—CiTaa— P Tjaks. 2
There is no constraint og, so minimization is straightforward, ¢ CiTaa™Pij"Tiaka (25)
yielding Substituting Eqs(25) into expressions for constraints, we obtain
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—a, jg [c;Ta—Ealds=\, 3@ [Py Tjalds
— @y é [{1vxa}C3Ta]dS

=\, 3@ [{1x,}P5'Tialds  (26)

hereE={0,0,0r,}. These are four linear equations foin terms
of the one-dimensional strain measuréx=Ja, \=F a.

Substituting the result into Eq&24) we obtain the solution for
as

$=—(cT+P TF L)a=Y(s)a. (27)

Finally, substituting Eq.27) into Eq. (23) yields the stiffness
matrix:

Cc= jg T'QT-Y'PY+LE (28)

wherel ,=F}J,. (LE corresponds to the teri, 6'r ).

From the present point of view, the derivation in Berdichevsky

et al.[4] is equivalent to setting to zero. It can be shown using
Eqgs.(24) and(26) that this assumption is appropriate for so-calle
circumferentially uniform sectiongCUS) (i.e., when material

constants can be taken outside the integral and satisfying th
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Fig. 2 Torsional rigidity, antisymmetric layup h=0.03in

d

tee results of Berdichevsky et di4] and those of the present

constraints onp, renders it zerp However, there are some case@symptotically correct theory is practically independent of thick-
that the influence of this term does make a difference. To demd#eSS, as can be seen Fig. 4. _
strate this let us consider a box-beam with geometry and materialt has to be emphasized that while the cases where the theory

properties taken from Smith and Chopd. Two following con-
figurations are considered:

outer dimensions: heighb=0.53in.

width a=0.953in.
wall thickness: h=0.03in.
material properties: E,=20.6x 1C° psi
E,=1.42x 10° psi
G, =8.7x10° psi
Gy, =6.96X 10° psi
v = v, =0.42
antisymmetric: right and upper wall layup:(©);/(—0)3

antisymmetric: left and lower wall layup: (—©)3/(0);
(29)
symmetric: right and left wall layup: (0)3/(—6);

symmetric: upper and lower wall layup:(—0)3/(0);.

Both antisymmetric and symmetric layups exhibit essentially r
elastic coupling, and the one-dimensional stiffness matrices ¢
diagonal. .

The torsional rigidity can be significantly overestimateeifis
disregarded. This can be observed by comparing the results
Berdichevsky et al.4] with the present ones and with the numeri:
cal results obtained from VABS Cesnik and Hod¢jgs The re-
sults of Berdichevsky et al4] are far too stiff in torsion relative
to VABS results while the present theory exhibits excellent agre
ment with VABS. Indeed, foh=0.03 the difference is less than
three percentsee Figs. 2 and)3With decreasing thicknegkeav-
ing the other dimensions the sananalytical results converge to
the numerical results. In fact by=0.006 in the analytical, results
exceed the precision of 1000 six-noded finite elements in VAB:

from Berdichevsky et al4] breaks down are quite rare, it might
actually create a false sense of security: For the considered sym-
metric case torsional rigidity is overpredicted by a factor of two!
On the other hand, another quite obvious approximation would be
to set the hoop bending moment to zero. This can be interpreted as
a thin-walled equivalent of the so-called “uniaxial stress” as-
sumption(when all stresses in the cross-sectional plane are set to
zerg that is quite common in beam theories, e.g., RE@ and

Kim and White[11]. As can be observed from Figs. 2 and 3, this
assumption leads to an underprediction of their torsional rigidity.
It has to be added that for the specific cases considered in Ber-
dichevsky et al[4], the differences between our results and theirs
are negligible. Thus, for the sake of brevity, the excellent corre-
lations published therein with experimental and numerical data
need not be repeated here.

50000
45000-f
4oooo-f
35000
o0

25000

20000

Torsional Rigidity (Ib-in%)

15000 —— VABS

10000_ = Berdichevsky et al.

mememee Present

5000

= = = Zero hoop moment

o]

U T

30

UNERBLIN AR T
40 50 60
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One should recall here that finite elements with large aspect ratios

are notoriously fickle. We also note that the difference between
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Fig. 3 Torsional rigidity, symmetric layup h=0.03in
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L. whereC,y, is given by Eq.(20) for open cross sections and

IS
V=
ez aaans ann

|}
|}
1}
A
A

(=}

T
\

L\

.- Ma:f 7S1i Tiads
(31)
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r= f 7%(Q%,—ciPiy)ds.

Note thatM, does not have a contribution frof, , since terms

of order e are correctly obtained using only classical warping.

This generalizes the formulas provided in Volovoi et[&].where

I-beams were treated as an assembly of strips rather than as a

WS DEUTE FURUS IS P P S S contour, and the results were extensively correlated with three-

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 dimensional simulations. For isotropy the formulas obtained re-
Wall thickness, in duce to Vlasov theory.

- - Berdichevsky et al. Finally, let us consider the terw,, from vy,,, which is of

—— Present order (?) () if R~a. If the cross section is open, there is no
constraint orii, so by choosingi; ;= ¢; — W, ; (hereg, refers to
Fig. 4 Difference in torsional rigidity, =~ ©=60deg the solution for Vlasov correctionthis term can be killed. Theo-
retically, for closed sections this is not truefifv, ;ds is not zero.
Value of this integral depends on the constraints imposed on clas-
sical warping. Using constraints that are chosen so that warping
The general conclusion can be drawn that, while for mosioes not affect the definition of one-dimensional variables, it can
layups either “no bending shell strain measures” or “no hoofppe shown that for a closed contour of a constant curvature
moment” might work quite satisfactorily, only the present theor$Ww, ;ds=0. For a general geometry this is not so, but constraints
can insure correct results for all the cases. can be adjusted appropriately. Therefore, this term is not expected

N . to play a significant role.
Strain Field. Let us emphasize that for all types of cross

sections—even in “classical” approximation—the cross section
is notrigid in its own plane! The in-plane strains are not zero b8 Conclusions
are given by Egs(19) and (27). By the same token, unless one ) N ) ) )
deals with isotropy or similarly restricted case, the shear syygin ~ Using small parameter§ and 3, which are inherent to thin-
is nonzero and essential to the analysis, even without resortingwalled beams, and without appeal to aag¢ hoc geometric as-
Timoshenko-like theories. On the other hand, within the precisi@umptions whatsoever, asymptotically correct theories are derived
of this approximationy;;, p11, andp,, have very simple expres- for thin-walled anisotropic beams. These theories include closed-
sions, since they are given by appropriate components. of form expressions for cross-sectional stiffness constants as well as
__. recovering relations for straiand displacement when possible
Recovering DisplacementsWhen there is no curvature' It is noted that the term “asymptotical correctness” concerning
={wy,,W;y,,hwz 5, SO onceg is obtained this relationship canan approximate solution denotes its agreement to a specified order
be integrated. In order to preserve the definition of onéa a small parameter with an asymptotic expansion of the exact
dimensional variables one has to eliminate rigid-body motiorsdlution in that parameter. Asymptotical correctness is the most
from this warping(i.e., fw;ds= [(w,X3—W3X,)ds=0), this al- important characteristic of any approximate solution.
lows one to definav; uniquely which then should be substituted The resulting Vlasov-like theory for beams with open cross
into Egs. (17) to obtain the full displacement field. However,sections is a generalization of the previously published theory for
whenR~a only W;, andw; can be obtained, whereas knowingl-beams in Volovoi et all5]. However, unlike any existing theory
¢, is not sufficient to recovew, andws individually. Thus, the for closed sections, the effects of shell-bending strain measures
full displacement field cannot be recovered in this case. The lat@ie included herein and their importance is demonstrated. It is
situation is similar to the one described in Berdichevsky arghown that the Vlasov effect for strips and beams with closed
Misyura[12]. cross section is negligible.
. Unlike most treatments of thin-walled beams in the literature,
2.5 Second-Order Terms. The next step of the asymptotic e present results are simultaneously obtained for open and
procedure allows us to obtain terms in the strain energy up {fsed-section anisotropic beams, including strip-beams. The sig-
€2(%)2. While generally this is a cumbersome procedure, it turngficant differences entailed by these different geometries are
out that sometimes these terms are very significant—and easiiyown to be naturally resolved within the same asymptotic frame-
calculated. This can be clearly seen from EG$). There are two Work. Now that an asymptotically correct theory is in place for
terms present iny;; and y;, which are of ordere(2)(2). While thin-walled beams, one can undertake critical assessment of pre-

we neglected those terms in the “classical” approximation, the\g/lously published theories of thin-walled beams.

clearly can be quite large. We perturb the “classical” displace-
ment field in a manner similar to the previous step in which References

was introduced mto_th_e dISplace_me_nt field. This _led to tbe pres-[l] Reissner, E., and Tsai, W. T., 1972, “Pure Bending, Stretching, and Twisting
ence of the unknownp in the strain field. Here we introdud, , of Anisotropic Cylindrical Shells,” J. Appl. Mech39, pp. 148—154.

which in turn leads tap in the strain. Let us note that due to the [2] Bercri]ichevsrfy, V. L., 1982, “On the Energy of an Elastic Rod,” J. of Appl.
_ : ) : Math. Mech. 45, pp. 518-529.
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. . . ~ Anisotropic Thin-Walled Closed-Section Beams,” Composites EAgNos.
unconstrained problem for closed sections in whigk=c; 6" 7. 5-7, pp-p411—432- P o

This leads to the one-dimensional strain energy per unit length [5] Volovoi, V. V., Hodges, D. H., Berdichevsky, V. L., and Sutyrin, V., 1998,
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On Torsion of Closed Thin-Wall
Members With Arbitrary
A chi Stress-Strain Laws: A General
oot ) Criterion for Cross Sections
= | EXhibiting No Warping

Tel-Aviv University,

Ramat Aviv 69978, Israel Warping due to torsion of closed thin-wall elastic members having constant thickness is

investigated under the assumption of small strain but with arbitrary isotropic shear
stress-strain laws. Based on a derived general criterion, it is shown that there exists a
class of cross-sections which undergo no warping. For cases where warping exists, an
example of simplified calculations, using the derived expressions, is presented for warp-
ing of a thin-wall rectangle[S0021-8936)0)03503-0

1 Introduction y=vXy) T=1(X)Y),

The problem of torsion has attracted attention for some fi
and has been considered under different asg@asy [1], Podio-
Guidugli[2], and Ericksen3]) both for linear or nonlinear behav-

rrIﬁ/herey and 7 represent angle changes and stress components
the strain and stress tensoesand T, are given by

ior (see Truesde[l4]). Thin-walled constructions may be of inter- 0 0 v, 0 0 =

est, as indicated below, not only for technical applications in

traditional engineering but also in such a new field as nanotech- 2¢=| 0 0 | T=|0 0 7. 2
nology, where the absence of warping may be of special interests Y v O 7, O

for molecular thin-wall structures. ) ' _ ) .

In the present paper warping in thin-wall constructions of cotJsing dyadic notation, we may represeg} conveniently in the
stant thickness is considered. We restrict here the problem fe@dlowing form:
members undergoing small strains but governed by arbitrary iso-
tropic shear stress-strairr{ ) relations. For experimental con-
5|dera}t|o_n .Of physical nonlinearity in real materlal_s, see _Bﬂ” Here k is the unit vector corresponding to the axis of rotation.

While it is known that the absence of warping is possible only ;

. : . . ; rom (1) and(3) it follows that

for circular cross section&r circular rings, under the thin-wall

2e=yok+k®y, T=m@ktkor 3)

approximation the situation changes dramatically. It is shown that y=2ek. (4)
thin-wall constructions possessing the property of no warping may
be convex as well as nonconvex. We note that the equilibrium equatidh- T=0 is then reduced

Finally for the case where a member does not satisfy the esté®-one scalar equation
lished criterion, based on the derived expressions, a simple ex-

ample of calculations of warping of a thin-wall rectangle is also V.1=0, (?z&XiJrayj). (5a)
presented. .
ie.,
. J J
2 General Relations T g, (50)
X ay

We consider below the standard Saint-Venant representation
for a prismatic member undergoing torsion about zfexis such Representing the displacement vectoras the out-of-plane
that all cross sections lie initially in the-y plane. Lettingy warping w (independent of) and the in-plane displacemenit
and 7, due to rotationwhich depends om through the angle of rotation,
. . . . Oz, where0 is the unit angle of twist
Y=yt T=EndtTy), (1)
be vector fields independent af u=wk+T, TU=0zkxp, w=w(x,y), (6)

. _ ) wherep=xi+yj is the in-plane position vector measured from the
While a classical mechanics approach was recently used by Yakobson, Brakggis of rotation. Using the definition of the small strain tensor

and Bernholc[5] and Falvo et al.[6] in investigating the buckling stability and . .
corrugation of carbon nanotubes due to bending, no such study of torsion appeargﬁ\_ Veu+uaV, it follows from (4) and(6) that

the literature.
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF y=Vw+9,li=Vw+OkXp, (7a)
MECHANICAL ENGINEERS for publication in the ASME QURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Apr.from which
13, 1999; final revision, May 5, 2000. Associate Technical Editor: J. T. Jenkins.
Discussion on the paper should be addressed to the Technical Editor, Professor ~
Lewis T. Wheeler, Department of Mechanical Engineering, University of Houston, Vw= Y- OkX P (7b)
Houston, TX 77204-4792, and will be accepted until four months after final publi-
cation of the paper itself in the ASMEDIIRNAL OF APPLIED MECHANICS. or, in coordinate form,
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contour L

Fig. 2

«
contour L

#

A
plane. One may thus imagine a thin ring of arbitrary shape. Sev-

eral examples of interesting geometrical shapes will be discussed
further.

The contour is then determined by the middle-curve of the cross
section; the position of a given point on this curve is defined by
the arc-length coordinat& and the cross section thickness ty
=t(S).

The usual approximation falosedthin-wall structures 5(see
Fig. 2):

=1Se. l&/=1, (10)

whereg, is the unit tangent vector to the contour curve lying in the

x-y plane. Equatior{10) obviously satisfies the boundary condi-
ow tions Tn=0, wheren is the normal to the contour, i.e., the ab-
— =y, +0y, sence of the traction on the lateral surfaces of the cylinder. Physi-
2 (70) cally, 7 is the average shear stress through the thin-wall cross
oW section. The equilibrium equat_ion is then reduced to conservation
7 =y,—Ox. of the shear fluxg along a section of the cross section:

The structure of Eq(7b) bears two consequences:

Fig. 1

g= rt=const.

] o ] (For multicell cross section shapes, the constant fluxes are differ-
Consequence i(“Global compatibility” ). We consider the ent for any given segmeit.

arbitrary contourl. as shown in Fig. (). Applying the compat-  Due to constitutive Eq(9), the shear vectoy has a represen-
ibility condition ¢ Vw-dL=0, substituting (7b) and using tation similar to(10) (see Fig. 2
Green'’s theorem, we obtain

r=v(9e, (12)
fﬁ y-dL=20A, (8a) where the scalar constitutive relation relatingnd vy is
L
r=f(y)y=F(y). 12)

whereA is the area within the contour. ) ) )

- o ) ) Neglecting the thickness of the contour segment, we rewrite

Consequence i(“Local compatibility” ). Choosing a differ- relation (7b) in the form
ent contourL*, surrounding an arbitrary are&* in the vicinity
of a cross section poirisee Fig. 1b)) and applying Stoke’s theo- d_W: e-Vw=g-y—0g-(kXp). (13)
rem to(8a), we obtaing ,« V X y-kdA=20@A*, which is equiva- ds
lent to (8a) for the chosen contour. Sinée" andL* are arbitrary,  \yhen the contour line consists of straight segments another
we may contract the contolr™* to a point, from which we obtain representation is simpler. We first note that(kx p)=Kk-(p
k-(VX y)=20. (8b) Xg)=p, , Wwherep, is the distance from the axis of rotation to a

o _ . straight segmentor its prolongation (see Fig. 3. Therefore, we
Note that one may formally obtain this relation by taking the rotaggyve

of (7b).
In what follows below, we consider isotropic elastic materials d_W_ Y 14
either having physical-nonlinear behavior ds_ Y TP (14)
=)y (%) The relation(14) is crucial for further consideration of the
or linear behavior warping, . . . . . .
We observe in passing that since, under the thin-wall approxi-
=Gy. (9b) mation,w is assumed to be a function only of the arc length, i.e.,

It will be seen below that the determination of Warping Is inde- °The present paper by no means is devoted to derivation of this well-known
pendent ofany specificconstitutive relation. approximation which is discussed in any standard refer¢see, e.g., Timoshenko
. i . and Goodief8]). Obviously, from the three-dimensional elasticity point of view, the
3 The Closed Contour Thin-Wall ApprOX|mat|on approximation corresponds to the main term in the asymptotic expansion. However,
. . . for molecular structures with widths of several atomic/molecular spaces, one as-
We consider below a closed thin-wall construction Whosﬁjmes this as a rational approximation relating shear force and angle of shear of the

cross-section consists of closed curvilinear segments inktkie corresponding molecular lattice/structure.
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Segment of the contour Regular polygons

.':::. ///’l pL .
p‘_ * O (axis of rotation) %H)*

Fig. 3

Fig. 4

w=w(S), the local compatibility condition becomes irrelevantall sides of the polygon, conditiop, =cosnst is satisfied auto-
Therefore only the global compatibility condition is required tanatically sincep, =R. To show thaR=2A/II we triangulate the
remove any ambiguity inv. area byN triangles(N being the number of sides of the polygpn

. . the area ok-th triangle isA,= %akR, wherea, is the length of its
4 Constant Thickness Doubly ConnectedSingle-Cel)  side. We then have

Section N N
. . R RIT
For a wall of constant thicknesst(E)=const) 7 is constant, A=2 Ak=§2 asz. (18)
and therefore,y is necessarily a constant, which can be easily 1 1
determined from the “global compatibility,” relatio8a), for the  cjearly, a circle corresponds to a regular polygon hiths oo.
closed contourThus, using As an example of @monconvexpolygon we consider below the
contour of a six-pointedDavid) star.
é y-dL=y jg g-dL=II, It is obvious thatp{ for the contour of this star is the same as

that for the “inscribed” hexagom(" (Fig. 6). It is easy to seéby

(wherellL is the perimeter of the contoyiwe obtain considering trianglésthat the are#p, of the contour of the star is

20A twice the ared\, of the inscribed hexagon; moreover, the perim-
Y= (15) eterIlp of the star is twice the perimetdi,, of the hexagon.
Since p{®)=pM=p and, since for the hexagonAZ/II,
We emphasize here that no specificy relation was used in de- =ph
riving (15). Lo
We then rewrite(14) as (o) 2X2A, 2Ap
dw  [2A PLTTa, T
FEEA b m)- (16)

We observe that since axial displacement in the torsion problem
is determined up to an arbitrary translation along the axigith-
out restriction of generality, we may assume-0 at some point
at the contour(lt is convenient to choose this point by consider-
ations of symmetry if such symmetry exigt¥Ve note that a re-
lation corresponding t616) is known for thin-walllinear elastic
multicell structuregsee, for example, Murra}9]). However, as
we have shown here, this relation is equally valid for physically
nonlinear elastic members undergoing small strains.

(

4.1 Shapes of Contours With No Warping. We now in-
vestigate the geometrical shapes of contours for whichO.
Since at some point of the contowr=0, thenw=0 if and only if
dw/dS=0. Thus, from(16) we have

2A 17

p,.=const i a7)

Note that any curve may be approximated as the limit case of a
polygon. Therefore, without restriction of generality, we may re-

strict our attention to considerations of polygons which satisfy Fig. 5
relation (17).

We note that relatiori17) demands that the distance from any A{"Smbedhexag‘m
side of such a polygon to the point representing the axis of rota-

tion be the same foall sides of the polygon.

We first considerconvexpolygons, both regular and irregular
polygons.

(i) It is clear that the class aegular polygonspossesses the
propertyp, = const(Fig. 4); by means of simple triangulation, we
find p, =2A/Il is always true for any such polygon.

(i) We now generalize to the class of irregular convex poly-

gons which are symmetric with respect to theandy-axes. Ex- Ap=24,
amples of such polygons are shown in Fig(I§follows that the T,=21,
center of twist coincides with the origin of the ax&3,) Upon

drawing an inscribed circle of radil® with center atO touching Fig. 6
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2b
C
=

/ o X max

P Fig. 9
‘\/ Inscribed circle

Fig. 7 A closed thin-wall section of constant thickness will not warp
under torsion provided there exists an inscribed circle (whose
center coincides with the center of rotation of the section) which

It follows that a closed thin-wall member whose cross-sectioa tangent to all sides (or their prolongation) of the section
is in the shape of a six-pointed star will not warp under torsion. To show that the constan2A/II, consider, for example, Fig.
7, where one quadrant of the section is shown. Then, by “Kepler

4.2 Generalization of the Results. Based on the criterion yiangulation,” it is clear that relatiofi18) holds where hera, is
of (17), we may generalize the results. We first recall that tl shown in the figure.

criterion for no warping requires that the distanee from the Thus, there exists also an infinite number of star-likencon-

center of rotation to the sidéser their prolongatiopof the section vex) sections possessing the required symmetry which do not
be constant. This criterion may be reformulated as follows:

warp under torsion; some of these are shown in Fig. 8.

Such sections may have technological applications, for ex-
ample, as cooling or heating elements since they possess relatively
large surface areas for a given volume.

4.3 An Example of Simplified Calculations of Warping.
As an example of the simplified calculations using the above de-
rived relations for a section undergoing warping, we consider a
rectangle with sides2 and 2, a>b, (Fig. 9. Then,A=4ab,
II=4(a+h), p!¥=b andp”=a, wherep® andp(” denotep,
to the sides with length& and 2b, respectively.

We then write relatior{16) as

dw?® [2x4ab ) __b(a—b)
B + B +b
R ds 4(a+b) a+b (19)
Inscribed circle d\l\l(b) - 2X4ab ) B a(a_ b)
ds = l4(a+b) B a+b
Note here, that although constadis‘®/dS#dw(®/dS, therefore
(a) dw/dSis a piece-wise linear function of the arc lendtee Fig.
7). These constants satisfy the following relation:
dw@ dw®
a—dS =—b—5 (20)

Now, due to the symmetry of the contow,=0 at the middle
point D of the side having length® Assuming® >0 and letting
S be positive in the counterclockwise direction, sirte(®/dS
>0, the warping,w, increases starting from this point up to the

w (warping)

Inscribed cirele

~

Fig. 8 Fig. 10
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Em o 1 A Device for Evaluating the
o.J.noss' | Multiaxial Finite Strain

e.tegan | Thermomechanical Behavior of
n.T.wignt § Flastomers and Soft Tissues

J.D. Humphrevz Described here is the design and development of a computer-controlled device capable of
Mem. ASME measuring the finite strain thermomechanical behavior of a general class of polymeric
materials including elastomers and biological soft tissues. The utility of this device for
Department of Mechanical Engineering, thermoelastic and thermophysical investigations is demonstrated by the measurement of
University of Maryland, the in-plane stress-stretch response and in-plane and out-of-plane components of thermal
Baltimore, MD 21250 diffusivity of neoprene rubber undergoing finite deformatid®£021-89360)01603-2
Introduction sponse functionge.g.,dy/dl c wherel c=tr C) similar to the iso-

The thermomechanical behavior of elastomeric, and specifica’{ﬁﬁrm"jII results of Rivlin and Saundet3]. Both cases require

rubber-like, materials has generated considerable interest in %asurlng biaxial stress and stretch at multiple temperatures.

mechanics community for close to two centuries. With the adveng. .
of laser, ultrasound, and microwave-based medical devicesgtt(%lam.1 depender_lce of the_heat flux. Rather, most _reports assume
Fourier conductiom(x,T)=—Kk(T)VT whereq(x,T) is the spa-

similar interest has recently arisen in the thermomechanical Re-" . flux, VT (=4T/9x) the spatial gradient of temperature,

havior of soft tissueq{1]). A general thermomechanical analyswand k(T) the scalar(i.e., isotropi¢ spatial thermal conductivity

?r{ etr?:s; ans]tzii::egr?(lj ?ﬁgﬁxgrﬁ ;‘siggllrng aOfLiCIEZal:/\r/isseé ?g:?nm;ligix' h4]). For finite strains, referring the conductivity tensor to the
phy : ' eference configuration simplifies material symmetry consider-

nonlinear constitutive relations necessitates appropriate theoretlgf'a o - .
: . L . ions, and thereby facilitates the formulation of general constitu-
frameworks to design and interpret the requisite experimgas E%/e relations. ThL}I/S note thaj=(1/J)F-q, whegreJ:detF.

For example, theory reveals that a complete description of reve oreover, a generalized Fourier conduction has the form
ible finite strain thermomechanical behavior requires identification

of two independent constitutive functior(g3]), the Helmholtz 1
potential q(x.T)=FF-(=K(C,T)- VoT(X,T)) 3)

lternatively, there has been little attention to the possible finite

=p(C,T), (1) whereK(C,T) is the referential thermal conductivity tensor. Of
. the tractable finite strain tests.g., combined extension and tor-
and the referential heat flux vector sion of a cylinder, membrane inflation, 8tcthe in-plane biaxial
_a extension of a thin rectangular shégt3,15) is also convenient
o=00(C.T, Vo), @ for thermophysical testing. Not only is the resulting strain field
whereC (=F'-F) is the right Cauchy-Green deformation tensofilomogeneous in the central region and the state of stress planar,
F (=dx/9X) the deformation gradient tensdF,the temperature, thin specimens facilitate isothermal testing and measurement of
VT (=dT/9X) the referential temperature gradient, andndX  thermal diffusivity. For example, Doss and Wrighit6] recently
the position of a material particle in the current and referencéemonstrated that the transient flash diffusivity mettidd]) may
configurations, respectively. Stress-strain-temperature relationslbe-extended to measure the diagonal components of the spatial
sult from derivatives of} with respect toC. Although a number thermal diffusivity tensoi of thin sheets of stiff polyvinyl chlo-
of functional forms forys have been suggestéii—7]), a widely ride (PVQ. Specifically, t_he flas_h dlffuswlty method yieldsvia
accepted form remains elusive due, in large part, to the continuilf SPatial energy equation which, in the absence of stress power
lack of multiaxial thermoelastic data. That is, most investigato/d volumetric heat addition, is
have focused on describing the available uniaxial dfga-11]) dT(x,T)
and hence the peculiar one-dimensional Gough-Joule and ther- —_—
moelastic inversion effects. Recently, however, Og@iéhpro- dt
posed a method for finding as a function of biaxial stretches andwheret is time. For materials in mechanical equilibrium, the con-
temperature, whereas Humphrey and Rajagpp2l showed that vective terms within the material are negligible, of course, and the
in-plane biaxial tests allow measurement of thermoelastic rttal derivative on the left-hand side of Ed) reduces to a partial
derivative with respect to time. Appendix A contains an outline of
ICurrent address: Black & Decker, Inc., 701 E. Joppa Road, Towson, MD 212861€ one-dimensional solution of E@4) that Parker et al[17]
#To whom correspondence should bﬁ até(iressed: Biocrm?icaICErﬁgineeSritnctq Reenployed in the initial description of the flash method. Here, Eq.
gram, Texas A&M University, 233 Zachry Engineering Center, College Statio i i Ta] i i
TX 770433120, E-mal jh@ac amudy Marquard parameter estimation aigoritm for both the radional
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF . X .
MECHANICAL ENGINEERS for publication in the ASME GurNAL oF AppLiep  (ONe-dimensionalflash methodmeasuring the out-of-plane com-
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Apr.ponentas, only) and the extended flash methéaeasuring the
é;, 1999; final rti\gSi(;n'e?escHol?d 1se9idAdf§§§:§emT'~;ﬁ2n?:éhlindgglf1E*fj-_uT)-r Rsrfgfe:three diagonal components af. This allows for more accurate
Lg/(v:igs'?l.o\rl]vﬁeneler, Igegartmen;]of Mechanical Engineering, Unilversity Iof i—ioustoiaﬂresematlon of the boundary Condltlons_‘ Append_lx A alsp O.Ut-
Houston, TX 77204-4792, and will be accepted until four months after final publ|lnes this model. Regardless, note that finite strain constitutive
cation of the paper itself in the ASMEDWRNAL OF APPLIED MECHANICS. relations are more easily formulated in terms of the referential

=a(C,T):V(VT(x,t)) 4)
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thermal diffusivity . Fortunately, one can infem, from chamber. Proper alignment of this chamber within the load frame
the measurablea via a=(11)F-ay-F' where ao(C,T) ensures free and smooth translation of the load carriages. The
=K(C,T)/(poce(C,T)); herep, is the referential mass densityoutside end of each pair of rods is attached to a cross bar that
andc the specific heat at constant deformation. separates the shafts and facilitates the application of axial forces.
There is, therefore, a clear need for a multiaxial thermomdhe inside end of each load carriage consists of three separate
chanical test system that can exploit the available theoretical uminum pieces: a cross bar that connects the two rods, a cou-
sults. This paper describes the design and construction of a neling bar, and a T-bar that has a series of equally spaced holes
device capable of both in-plane biaxial thermoelastic testing af@ 75 cm apaitthat serve as rigging points for the specimen load-
measurement of the orthogonal componenta.dflustrative data ing threads. Two of the load carriages, one on each axis, have
are presented for neoprene subject to equibiaxial stretch ratiosvatertight and temperature compensatéd:{ —29,93°C) load
=A;=AN, (\;=I;/L;, no sum oni, with |; andL; being current cells mounted between the cross bar and coupling bar.
and reference lengths, respectivelyith A e[1,1.5], at tempera-  The last component of the loading subsystem is the mechanism

ture levels of 21 and 41°C. for inducing axial load. Each of the four carriage assemblies is
independently loaded via a 1-mm lead ball-screw driven by a
Experimental System stepper motor. A ball-nut attached to the outer cross bar of each

Figure 1 is a schema of the overall optical-thermomechanié d carriage converts the rotation of the ball-screw into linear
system. The system consists of five subsystems, one each) ford!SPlacement of the carriage assembly. The stepper motors are
biaxial loading,(b) in-plane strain measuremeri¢) environmen- individually controlled by a four-axis indexer card in the Pentium
tal control, (d) flash illumination, ande) point-wise temperature Personal computeiPC. Such a drive system allows implementa-
measurement. tion of fully automated stretching protocols.

Biaxial Loading System. The load frame is machined from Strain Measurement. In-plane finite strains are measured
one piece of mild steel to outer dimensions of 4645.7 cm with  OPtically by tracking the position histories of four small, contrast-
a 2.54 cm square cross section. The outer and inner surfacesigemarkers that are affixed to the bottom surface of the specimen
ground to ensure that opposing sides are flat and parallel. THdd- 2b)). This approach has been described previodsl$]),
frame is mounted on an optical table using a standard 2.54-&Rd is sufficient because of the homogeneity of the strain field in
diameter, 15.2-cm long support rod at each corner. A pair of hothe central region, as confirmed via pilot experiments as well as
zontal through-hole$1.27-cm diameter and 4.45 cm apaate by finite element analysis. For example, finite element analysis
centered on each side of the frafiféy. 2a)) such that the axes of (ABAQUS), assuming a Mooney-Rivlin material response, re-
any pair of holes are collinear with those of the opposing pair avgaled that the strain field is essentially homogeneous and exten-
perpendicular to the other two pairs. Each of the eight holes $&nal (< 5 percent sheqrin the central sixteenth of the planar
fitted with a 1.91-cm-long linear recirculating ball bearing specifiarea of a square elastomeric specirt/d9]) that is loaded by five
cally designed for linear travel of shafts with minimal transversequidistant point loads at each edge. A CCD video camera, frame-
play. grabber board in the PC, and custom software track the position of

Nearly uniformly distributed in-plane biaxial forces are applie@ach of the four markers at the 30 Hz frame rate. The software
to the square specimen through four load carria@ég. 2(b)). algorithm, based on Downs et §20], uses a correlation method
Each edge of the specimen is attached to a single carriage udindocate the markers first in a “coarse” and then in a “fine”
Kevlar thread(or silk suture for biological tissug¢sThe load car- search region. The marker positions serve as input to a bilinear
riages consist of two parallel 0.635-cm-diameter solid, hardeneparametric interpolation algorithm that provides the compo-
stainless steel rods. Each rod is supported in one of the aforemeeants ofF in the central region at each configurati@ee Appen-
tioned through-holes by one of the linear bearings in the loatix B). The components of provide information for feedback
frame and a neoprene O-ring sandwiched between two Ruloontrol (described beloyvof the thermoelastic tests at thermal
bearings, which form a watertight seal for the environmentaiquilibrium. In thermophysical tests, the componentE afe reg-

Motor Controller Stepper
Board river (4)
Stepper
A/D Load Cell Motor (4)
Board Signal Conditioner
Thermocouple Probe (3)
-«— [oad
Thermocouple Cells
Amplifiers (3 l
Frame Grabber \ﬁ
i <P 1=
Specimen ¢
CCD Camera &
Macro Lens Elualfah
- (under motor) Heater
° PC
° D

\— 90 MHz Pentium PC Temperature Flash Discharge
Controller

Fig. 1 A schematic drawing of the overall experimental system
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Temperature Measurement and Flash System. The prin-
ciple of the flash technique for measuring thermal diffusivity is
described elsewher§21-23,17,24). Briefly, a flash system con-
sists of a radiant energy sour@ag., a flash lamp or pulsed lagser
capable of delivering a short burst that heats one face of the speci-
men, and a probe to measure the associated temperature history on
the opposite face. Here, a linear xenon flashtube, mounted in an
aluminum reflector, illuminates the top face of the specimen.
When the in-plane components of are to be measured, a 50
X50mm aperture plate with a central 2@0 mm opening is
mounted between the source and the specimen; the aperture is
removed for measurement af; alone. Three 0.25-mm-diameter
E-type thermocouple probes are mounted in an aluminum bar and
form the apexes of a right isosceles triangle having two 15-mm
sides, and when aligned with the aperture, they measure the tem-
perature at the center of the projection of the lighted area and at
two points outside this projection along the two in-plane axes. For
measurements af;; alone, only the central thermocouple output
need be used. A small amount of high thermal conductivity sili-
cone paste is used to insure good contact between the thermo-
couple probe and the specimen surface. The fixture is attached,
through the port in the top plate of the environmental chamber, to
a micrometer head that can raise or lower the thermocouples as
required. A second CCD camera and mirfeot shown monitors
the contact between the specimen and the thermocouples.

Data Acquisition and Control. Eight independent channels
of information are recorded simultaneously using an analog-to-
digital (A/D) conversion board in the PC. The A/D board has
high-gain amplification and a cold junction compensation circuit,
specifically designed for acquisition of thermocouple data, re-

(b)

Fig. 2 Biaxial extension device. Panel

(a) is an oblique view of
the device where (1) camera, (2) load carriage, (3) environmen-

tal chamber, (4) heater, (5) Kevlar threads, (6) load frame, (7)
motors, (8) motor supports, and (9) limit switches; in-plane di-
rections defined as 1 and 2. Panel (b) is a schema of (1) the
specimen with centrally placed tracking markers, (2) Kevlar
threads, (3) T-bar, (4) coupling bar, (5) load cell, and (6) flash-
bulb and reflector, as seen from below.

corded on one of the eight channels. The E-type thermocouples
occupy three channels, whereas two T-type thermocouples, one at
the glass window covering the flashbulb to mark the flash event

on the data file and another above the specimen to record the
ambient temperature, occupy two channels. The two load cells are
connected to a signal conditioner, the output of which occupies

the last two channels.

The strategy to control the biaxial finite deformation involves

actuating the two opposing motors in one stretching direction at a
constant velocity and varying the velocity of the two motors in the
orthogonal direction so that the measured stretch in that direction
istered prior to the flash illuminatiofi.e., at mechanical equilib- 1S Within a small errok of the desired stretch. Hence, lef be the
rium), which only slightly perturbs the strain field. deswed_ stretcléeithern; or \,), A, be the measured stretch,_ and
s the difference between, and\ 4. If | §|<e, then the velocities
Environmental Chamber. The environmental chamber al-of the two motors on that axis are set to zerd.df> e, however,
lows testing of the sample in air or liquid at nearly constant tenthen the motor velocities must be adjusted to bringback to
peratures(+1°C). The chamber is constructed from a 1.27-cmyjithin e of \4. The velocitiesw of the controlled motors are
thick polycarbonate sheet and sealed with silicone adhesive dgjusted proportionally té usingw= G35, whereG is a suitably
prevent leakage of the solution. With outside dimensions 40\@jued parameter determined by trial and error during preliminary
X40.0<7.62cm, the polycarbonate shell fits inside of the loagksts until the control of the specimen is acceptables i too
frame (Fig. 2(&)). Though not shown for clarity, top and bottomsmall, the stepper motors move continuously in the same direc-
plates are screwed onto the polycarbonate shell and silicone ryBn  indicating thatw is too low and possibly not keeping the
ber gaskets form seals between the plates and shell. stretches withire. Conversely, ifG is too large, the motors oscil-
The top plate of the chamber has a central port that allows thge indicating an overshoot afy, thus requiring the motors to
flash lamp(described beloto be placed in close proximity t0 reverse. A suitable value @& between these two extremes should
the specimen, thereby ensuring that enough energy is absorbeqiRls pe selected. Note thatdf>0, thenk ;>\ 4 and the direction
the sample to obtain a desirable temperature rise on its bottefstation of the motors must be such thag is decreased; iB
surface. The separation between the lamp and an approximately then the specimen must be stretched more. Once the control-
2-mm-thick specimen may be adjusted between 1.0 and 3.0 cmyilfy velocity is determined, its value is sent to the motor controller
addition, the top plate allows access by the thermocouple proBigy The control cycle is repeated throughout the experiment at
for measurement of the temperature field on the bottom face of tgg Hz by calculating the new stretch ratios, determining the con-

sample. The bottom plate has a centrax@x 1.5mm glass qling velocity, and sending the new velocity to the motor con-
window that allows the camera to view the aforementioned mar, oller card.

ers for strain measurement. Additionally, the bottom plate has

drains to remove liquid from the chamber. Specimen Preparation. Thermoelastic tests were performed
The chamber can be maintained between room temperature andspecimens measuring 50-mm square cut from 1.6-mm-thick

90°C by a 750 W, 1.27-cm-diameter, 30.5-cm-long submersibpeecast sheets of high-grade neoprene rubber with a Shore A hard-

heater that is mounted in the chaml§Erg. 2(a)) and modulated ness value of 35—4BVicMaster Cary. Outside of the biaxial de-

by a thermostatic controller. vice, each edge of the specimen was sewn to a T-bar using a
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Fig. 4 lllustrative in-plane stretches N\, and A, for computer
controlled equibiaxial, proportional, and constant A\, stretching
protocols. Data are for three cycles each  (cycle 1. +, 2: A, 3:
0), thus showing reproducibility and robust control.

Fig. 3 Stress relaxation curve of a neoprene rubber specimen
during preconditioning

0.254-mm-diameter sewing needle and 0.2-mm-diameter Kevlar
thread. Six holes spaced about 3.75 mm apart and 10 mm from the
edge of the specimen were used on each edge. Four whitg200-central region of the specimen with respect to the stress-free ref-
spots of titanium white acrylic paint were placed in the centr&lrence configuration at the reference temperature. The character-
5X5 mm squaréi.e” 1/100th of the planar areaf the specimen istic nonlinear behavior is well known and has been well docu-
on the bottom face of the black specimen. The T-bars were theiented in the pasi[8,25,26,1]). Similar measurements on
attached to the coupling bat&ig. 2(b)). Prior to thermoelastic specific materials of interest will add greatly to the existing ther-
testing, each specimen was systematically preconditioned, th@toelastic database that is needed to evaluate current constitutive
mally and mechanically: each neoprene sample was held attharmoelastic model§5,12,7) as well as to develop new consti-
in-plane equibiaxial stretch ratio af=1.45 at 41°C for 24 hours. tutive descriptors of other such materials.
The reduced range of temperatures examined in these first me
surements on neoprene, as compared with the 90°C capabilityO(P
the chamber, are the result of the reduced tear resistance of QF
i

. g

prene at elevated temperatures. Figure 3 shows the stress rejgakso shecimen thicknesses and multiple equibiaxial stretches and
ation response of a typical specimen during preconditioning. T g) the diagonal components af as a function of finite equibi-
relaxation response was 86 percent complete after two hours xgal deformation at room temperature
more than 95 percent complete after 12 hours. Immediately fO'First .- Was measured for three neéprene specimens of nomi-
lowing the 24 h_ours of such precond_itioning, the sampl_e_ was upy thiéknsgsses of 1.6, 2.4, and 3.2 mm. Following precondition-
loaded and subJ_ected to ‘hefmo.e'a!s“c testing. Pr_econdmonlng ﬂé and then registration of the unloaded reference configuration
the thermophysical tests was similar. New specimens were p{pé recording the marker positionat To~21°C (i.e., ambient
conditioned at an equibiaxial stretch »f=1.52 at 25°C for 16 rc.)o.r,n temperatue the top surface of é)ach specirﬁén was sub-
haurs. jected to a series of five pulses from the flash lamp, each separated
by ten minutes to allow the specimen to regain thermal equilib-
rium. Figure 6 shows a typical bottom surface temperature re-

Stress-Strain Response. Figure 4 illustrates the ability of the sponse following the flash. For a bottom surface temperatyre
system to execute well the prescribed protocol&jrconstantx
tests, withh\;=1, 1.2, 1.4, andb) proportional stretch tests where
(Ao—1)/(Ny—1)=m, with m=2, 1, 0.5; equibiaxial stretch is a 12
special case witln= 1. Each of the tests consisted of three cycle 3
at a frequency of about 0.017 Hz. The repeatability over the thr 1.0 F
cycles for each type of test illustrates the robust control and tl
effect of preconditioning. Recall that the automated control of tr 08 F
motors was based on the video strain measurement of the in-pla,(tT

Thermal Diffusivity. Two types of tests illustrate the ability
the device to measure thermal diffusivity of specimens sub-
ted to finite in-plane deformation: measurement&bir,; for

Illustrative Results

o 332°C
A 412 °C

stretches, thus permitting corrections at 30 Hz. o 06 I

For homogeneous principal extensiofisdiagdh;,\,,\3] and = 1
J=detF=N\1\,\3=po/p (Wherep, andp are the reference and £ 04
current mass densities, respectiyelyencel ; can be determined ™ r s
at each temperature, givgn=p(T). Data obtained from Anter 02 | E}{U e
Laboratories(Pittsburgh, PA on neoprene samples tested Tat r L%eﬁd
e[20,60°C suggest that, to first order, 0.0 | AR

p(T)=po[1+B(T=To)] ™ (5) oy

wherepo=1.317 g/cmi, =3.915x10 4(°C)"%, and T,=20°C 0.9 Lo 11 12 L3 L4 =
is the reference temperature at whigh is measured. Figure 5 A

shows illustrative in-plane Cauchy stress as a function of modifiea

stretch ration] (=J~\,) for one sample at three temperaturesig. 5 Typical Cauchy stress-stretch curves for neoprene at
levels (T=25,33.2,41.2°C). The stretches are calculated in thieree temperatures for equibiaxial stretch tests
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Fig. 6 Bottom surface temperature history for a one- Fig. 7 Temperature history of the central and one of the lateral
dimensional flash test showing the close agreement between thermocouples for equibiaxial in-plane stretch of ~ A=1.03. Solid
the measurements, the temperature history calculated as part line is model result.
of the data reduction, and that calculated assuming the bound-
ary conditions originally used by Parker et al. [17] and the
value of a3; determined by the Marquardt data reduction. T .
~4 s, ® Y a Y2 tests. The in-plane values are found to be 0.151 and 0.153spm

which are about 31 percent higher thags. As was suggested by
the results of Doss and Wrighi6] for PVC, this is likely the
result of extrusion processes during the manufacturing of the neo-
prene sheets. Indeed, Choy et[al7] found an increased diffusiv-

ity in the draw direction and decreased diffusivity in the direction
EtFi:rmal to the draw of highly drawn polyethylene using a one-

the temperature exce#s=Ty— T, has been scaled by the maxi-
mum temperature excess measured on the bottom suégge
(typically about 3°Q. Time has been scaled hy,, (typically

about 4 %, which is the time at which the bottom surface reach
Omad2. After the five pulses, the specimen was extended equi
axially to the next desired stretch, its marker positions recorded
this equilibrium configuration following stress relaxation, and thB

flash procedure repeated. Once all data were collected at ro dspecimen appeared to be partially translucent to the flash en-

temperature, another series of stretch and flash data were colle 2071 the stretched state. This leads to error in the indicated
at 40°C. After increasing the temperature level, the sample way :

allowed to reach thermal equilibrium prior to inducing mechanicy 1€ Of‘;‘33 beﬁause the bounc:lgry value prloblem us_eﬁl to dleter-

stretch. mine a3 from the temperature history is no longer strickly valid.
Since the transient temperature rise on the bottom surface d EUCh. error is small, It reveals itself by the |nd|9ated valueygj

to each flash was about 3°C and of similar magnitude on the t§ganging as the fraction of the temperature history used in data

face, after a brief initial transiel0 m9, data were collected at reduction increases. Tayld24] showed that in such circum-

nearly mechanical and thermal equilibrium. Here, the bottom s@%\igge\/saltggsvc?tiuecfl%su?;tag dbL?sifr?ug?ﬁgyeﬁi(:‘rrzg(t)i?r:?gftrh% 't'g]:_
face temperature history was measured directly aggdwas cal- 33 9

culated using the Marquardt parameter estimation algorithf§ 2ture hlstr(])_ry to thﬁ. one rlln(élce}ted at zero fractlonl of éhe
coupled with a finite difference solution of E¢4) outlined in emﬁgrﬁture |r']story. T |_|§hmet IO 0 corrgctlon was er(rjwp c()jye at
Appendix A. Figure 6 shows close agreement between the mé@t@ dlg stfrethc fstate.s. fe ;\’a uesagh an azﬁremame clin' e_d

surements, the temperature history calculated as part of the d&?ﬁ ent of the fraction of the temperature history used in data

reduction, and that calculated assuming the boundary conditige: uction because they are strongly dependent on the temperature
' g y HiZtories of the thermocouples that are outside the projection of

the aperture opening.

imensional flash method. At the larger deformatian=(1.52),

e mean value ofrs, is found to be 0.112 mffs, about 5.9
ercent lower than the undeformed value. In contrast, the in-plane
ﬁllues increase to 0.165 and 0.159 ffsnlt should be noted that

originally used by Parker et aJ17] and the value ofx3; deter-
mined by the Marquardt data reduction. The mean values;ef
found in these one-dimensional measurements are 0.11%snan .
21°C and 0.117 mffs at 40°C. These values are within five per-ConClus'ons
cent of those measured by Anter Labs and match well the trendThe ability to measure the multiaxial mechanical response of
with temperature, though this decrease is within the scatter of thlastomers, and similarly planar soft tissues, promises more com-
measurements and thus, not statistically significant. plete data for the formulation of constitutive models for finite

A second set of tests measured the diagonal components o$train thermomechanics. The active control of the finite deforma-
for three specimens with a nominal thickness of 2.4 mm. Agaitipn, via the real-time video feedback to the motor controllers,
following preconditioning, each specimen was tested at twallows measurement of the material response to a wide variety of
equibiaxial stretch states of approximataly-1.03 and 1.52. A deformations that theory reveals would be useful. The equibiaxial,
minimum of five flash tests were performed at each of the twaroportional, and constant stretch tests discussed here have illus-
deformation states. Figure 7 shows the measured bottom-surfereged this capability. Reprogramming the motor control algorithm
temperature history of a typical test along with the best-fit resultgould allow constant invariantcf. [12]) and other tests to be
based on the three-dimensional finite difference model. Agaieasily performed, as well. Data from such multiaxial tests are not
there is close agreement between the data and the model. Becaeadily available in the literature.
of the difference in the temperature response rate and levels folFormulating models of general thermoelastic response requires
the central and lateral thermocouples, the variables have been teétt the temperature field within the material also be modeled. To
in dimensional form. this end, this device incorporates an extension of the flash thermal

At the smaller deformationN=1.03), a3 is found to be 0.116 diffusivity technique that allows measurement of the in-plane
mn/s, which is within 2.4 percent of the value measured with theomponents of diffusivity as well as the more commonly mea-
one-dimensional test and within the standard deviation of boslured out-of-plane component. Data presented illustrate that neo-
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prene rubber at low stretches may still have anisotropic thermmah?/s measured heyeRecall that the aperture opening is 10 mm
diffusivity and that these values may change with stretch, evem a side and the distance between the central and transverse
over the moderate range of equibiaxial stretches examined. Stisermocouples in 15 mm, bdt~=3 mm. Furthermore, the thermal
coupling may be more marked for other materials, particularlgffusivity of air at room temperature is 22.5 mfs as compared
elastomeric composites and soft tissues. with the neoprene with 0.12 nfits. Thus, once the air has been
heated by the central region of the bottom face of the specimen, it
provides an alternative path for energy transport. Since the tem-
Acknowledgments perature rise of the transverse thermocouples in the three-

Support from the Army Research Office through grandimensional tests run here is on the order of 0.3°C, even a small
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The Marquardt algorithm and finite difference model estimate

Analysis of the Temperature History. In the flash method five parameters: the three components of thermal diffusivity,,
as originally developed, the top face of a planar specimen is uiz2, andass), the scaled heat flux to the specimen as defined by
formly illuminated by an impuls€[17]). The temperature field is gpa/pC, and a convective heat loss term defined hslZpCdx,
then described by a simplified E@}) as wheredx is the node spacing ardt the time-step. Further details

JT 2T are available in Doss and Wright6].
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Appendix A

(A1)
Appendix B
wherex;e[0,d], d is the current thickness, and the subscript 3

indicates the out-of-plane direction. Neglecting convective Iossre{.gqsnam Measurement. Assuming a homogeneous deforma-

n in the central region, the in-plane componentg-ofan be

a good assumption in the short time of most one-dimensio 2lind via ([18)

measurements, the solution of E41) for the temperature rise at

the rear surface of the specimen that has experienced such a uni- duy du,
form impulse is([28]) Fu=1+ X, Flz_a_xz (B1)
Q ” % n2772 ) ] 9
T(dt)=——|1+ 2 (-1)"exg — —7ast|| (A2 M 2
(@h=rcg|ir 2 (- @ osdt]| (A2 Famgx, Falt o (B2)

whereQ is the area-density of energy associated with a pulse @hereu; and X; are the components of the displacemestx(
radiant energy that is assumed to be instantaneously and unix;) and original position vectors, respectively. The displace-
formly absorbed in a thin layer at the top face of the specimement gradientsu; /9X; can be found via a bilinear isoparametric
Noticing that the bottom face temperature history contains thgterpolation of any four markers that define a quadrilateral. For
parametery= (m?asst/d?), this solution provides a simple ex- example, let

pression for determining:;; from a single point on the tempera-

ture history curve defined by E¢A2). Choosingt 4, as the time at B En: j i
which the temperature reaches one-half its maximum valyg Xi=2 P8 mX (B3)
=Q/pced yields y=1.38. The result is !
n
1.380° : _
d33= 5 . (A3) ui:z fj(g! ﬂ)uf (B4)
T tl/2 j=1

An alternative analysis, that is also employed here, is to usevieren (=4) denotes the number of markers and
Marquardt algorithm([29]) to estimateas; by minimizing the 1
dlff_er_ence_ between a m(_easured temperature history and resylts of fi(¢,n)= Z(l+ {1+ nnh (B5)
a finite difference solution of Eq(Al). The advantage of this
approach is that the assumed boundary conditions may be relaxed standard bilinear interpolation. In the case of equibiaxial ex-
to include possible convective losses and a finite light pulse. tensjon(with no rotations, F1;=\, Fp,=\ andF,=F,,=0.
Moreover, an analytical solution is not practical for determining
the components o in the three-dimensional tests. Instead, the
Marquardt algorithm is used again, now in conjunction with &eferences
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Probability in an Applied
m.zngales | Mechanics Problem: Vector
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In this study probabilistic and nonprobabilistic anti-optimization approaches are con-
Department of Mechanical Engineering, trasted to evaluate their relative advantages and disadvantages while solving a mechani-
Florida Atlantic University, cal problem in presence of vector uncertainty. The different cases that are analyzed in
777 Glades Road, probabilistic setting that deal with either uniform or generic probability density functions
Boca Raton, FL 33431-0991 for the uncertain variables varying in a rectangular domain. This case has been com-
pared with interval analysis, a particular case of anti-optimization. The presence of a
convex, smooth boundary of the uncertain domain has been also considered for compar-
ing results obtained with these two alternative methods. It is shown that in case of vector
uncertainty the anti-optimization method yields the same solution for the design problem
as is provided by means of more complex probabilistic considerations.
[S0021-89360)03103-3
1 Introduction P patr (o= )
Consider first the simplest problem involving a single random Pel ! a '

variable. Let the simply supported column be not straight but %henr—d P/P

; S ) . tends to the value % u,/a. This value can be
bent into an initial, unloaded shape. Unlike the straight colum btainedwithoutcgl)robabilistic argumenﬁef Indeed, sinag is the

the bending will occur.immediat.ely upon appli.cation of the axi aximum value ofay, it is immediately seen that the perfor-
load P, regardless of its magnitude, due to its offset from thﬁ]ance will be guaran’teed if

slightly curved centerline of the bar. The total deflection of the
column at any point is the sum of its initial deviation from the a(1-PIPy)=p,.
straight line and the additional deflection due to the applied loaghis immediately results in the minimum admissible value of
P. If the initial displacement is represented asl sin(mL) p/p  that coincides with simple yet more elaborate probabilistic
wherea, is the amplitude| =length, then the total displacement,ajysis. This simple idea is being generalized in this study for
o=al in the middle cross section is connected to the |Baals e realistic case of bounded variation of two variables.
follows: In a two-dimensional case uncertain vector is identified with
ao 2E| two coordinates. These may vary in a rectangular region, which
=————; Py=—7 enables one to the use of the interval analysis in a vector setting.
1=PIPg L If is intuitively understood that the smallest length interval shall
where P, is the Euler load. Leta, have a uniform density Pe chosen to characterize the one-dimensional uncertainty; for the
1(u,— pq) in the range[ uq,u,]. Reliability is given by the two-dimensional case one should seek for a rectangle of minimum

probability that the total displacement is not greater than a pregg€a, since then the further evolution of the system will be more

a

lected valuew, R=Prob@<a). closely bracketed. Yet, this may not be a best representation of the
Reliability becomes available data whose scatter must be modeled. Indeed, in some
cases, enclosing the data by regions other than rectangle may

0, a(1-P/P¢)<py result in even a smaller area, enclosing all available data. The

a(1-P/P,) possibility ari_ses, for example, of enclosing the data by the mini-
R={ ————, w1<a(1-P/Py)<pu, mum area ellipse, whose area may turn out to be smaller than that

M2 My of the minimum area rectangle. Along these thoughts, in addition

1, a(1—PIPy)>pu,. to interval analysig[1-3]) the ellipsoidal modeling was devel-

. . ) o oped ([4-6]) for uncertainty analysis. Interestingly, these two
We want to design the column with required reliabilityi.e., R jines of thoughtsion intervals and ellipsoidsintersected in ex-

=r. We find the design value d¥/P, from the equality tremely few works, and essentially have been developed in paral-
_ lel, and mostly without knowledge about the developments in
a(1-P/P) X
= other fields.
M2 M It appears that the ellipsoidal framework has some advantages
leading to the design value over the interval analysis in the sense that it deals with a smooth,

convex boundary of the enclosed data with associated straightfor-

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF ward analytical or numerical treatment. Yeft the ellipsoidal data.
MECHANICAL ENGINEERS for publication in the ASME OURNAL OF AppLED ~May suggest that the components are functionally dependent. This
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Octtacit assumption may be unjustified in some circumstances. Hence
23, 1998; final revision, Feb. 29, 2000. Associate Technical Editor: W. K. Ligthe independent data may be better Jus’[med as enclosed by a

Discussion on the paper should be addressed to the Technical Editor, Profe! : ; : ; ;
Lewis T. Wheeler, Department of Mechanical Engineering, University of Houstoi&tangwar region. Interval and ellipsoidal modeling are particular

Houston, TX 77204-4792, and will be accepted until four months after final publ=@S€s of the convex mOde"f‘ib?,S])_- In fact, convex de_sc_:ription
cation of the paper itself in the ASMEDIRNAL OF APPLIED MECHANICS. of uncertainty is richer than the ellipsoidal one: In addition to the
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ellipsoids per se, it includes sets with functions with envelope, andh, being the amplitudes of;(x), (j=1,2), respectively.

bounds, or those with bounded integral squares, or those withEg. (1) the integera>1 represents the wave number in the

bounded integral squares of its derivatives and so on. variation of f,(x). Following Elishakoff[19], we will use the
The case when the uncertain variables do not belong to a carondimensional quantities

vex set may dealt with the methods of nonlinear programming

([9]). All these analyses share the main ideaamtf-optimization = X A= ot

namely, of the desire to determine least favorable responses, in ™

D
order to guarantee the successful performance despite the pres- _ . . . . B . .
ence of uncertainty. v(vahere é=nondimensional axial coordinate,=nondimensional

W B P W
u=x. ¥Y=p U=g 9

cl

In this paper the two-dimensional uncertain imperfections al get’):no%(()j(ifrz:nr;?gr?;?ens;%r:jeiltlional m't'?jlis lacceilr?]pélgtcemegtﬁ d
considered in the context of the column impact problem. The s P ’

probabilistic modeling of uncertainties of various kinds in the dyc_z—nond|men5|onal axial load. In E¢9)

namic buckling setting were dealt with by Goncharefik@|, Bu- 2 [El | 72El

diansky and Hutchinsofill], Lindberg[12], Ariaratnam[13], w1=(— —, A= \/: Py=——> (10)

Kil'dibekov [14], Amazigo and Frank15], Amazigo[16], Lock- L mA A L

hart and Amazigg17], Maymon and Liba{18], Elishakoff[19], where w,=fundamental natural frequency of the ideal column,

Bogdanovich 20,21 and others. i.e., of a column with neither initial imperfections nor axial load,
Convex modeling of the dynamic buckling problems was faciliA=radius of inertiaP.,=classic, and Euler’s buckling loagig.

tated by Ben-Haim and Elishakdi22], Elishakoff and Ben-Haim 1). The nondimensional amplitudes of initial imperfections are

[23], Lindberg[24,25 and Ben-Hain{26]. These two avenues of

thoughts on the uncertainty modeling, namely, the probabilistic g91=hy/A,  g=hy/A. (11)

and anti-optimization ones, have not been compared in either ofrne aqditional displacement is sought as a superposition,

the above studies. This will be the principal objective of the

present paper. The direct comparison of designs yielded by two U(EN)=ug(EN) FUs(éN), (12)

ﬁ:gg}%@;ﬁ)fﬁf}f’gﬁﬁgﬁg ?\t‘vid;tlgﬂggcgh:pS?S:g:;ompat'b'“ty}/(\?ﬁerg the functionsu;(¢,1) and .u2(§,)\) are solutions of the

ollowing equations, respectively:

L. . (94Uj (92Uj (92Uj dZUE)J') .
2 Deterministic Analysis ¥ + 7270—52 + ’7T4W =— Wzyd—gz (j=1,2 (13)
The differential equation for the uniform column under axial o .
impact load with the initial imperfections expressed as
P(t)=P(t)° (1) ug’(§)=gasin(mé), up’(§)=g,sinam).  (14)
reads The functionsu;(£,\) are represented in the separable forms as
4 5 5 5 the initial imperfections in Eq(14), namely,
I*w J*w Fw %W
Bl TP G tmAGe =P 52 @ U(EN)=es(N)Sin(TE), (£, M) =e,(\)sin(amé) (15)

with E=modulus of elasticity,|=moment of inertia,m=mass Wheree;(\) ande,(\) are time-dependent functions. Substitution
density, A=cross-sectional are®(t)=axial load,wy(x)=initial Of Eqs.(14—(15) in Eq.(13) yields ordinary differential equations
imperfection, constituting a small deviation of the initial shape oith respect to functions;(\) ande,(A):

the unstressed column, andx) =additional transverse deflection d2e,(\)
of the column’s axis, so that # +(1-y)e(\)=y0, (16)
Wr(X,t) =Wo(X) +W(X,t) ®3)
. . . . d?e,(N)
represents a total displacement. In Et) (t)° is a singularity ———+a%(a?— y)e,(\)=yaZg,. 17)
function, namely, a unit step function dx
0 t<0 Satisfying the initial conditiong;(0)=0 and'ej(O)=O (j=1,2)
o]’ 4) Yyields
{® 1, t=0. @
In Eq. (2) following notation are adoptedk=axial coordinate, y—gl(coshrx)—l), y>1
t=time, P(t)=axial load, m=material density, andA=cross- y—1
sectional area. e;(\)={ G1N?/2, y=1 (18)
The attendant boundary conditions for the column that is sim-
ply supported at its both ends read 1791 (1-cogrr)), <1
w(x,t)=0 atx=0 and x=L (5) Y
where
Pw
W:O atx=0 and x=L (6) r=\|y—1|. (19)
whereL is the column’s length. The initial conditions are Fore,(\) we have
IW(X,t (Y92
w(x,t)=0, %=O att=0. 7) _az(coshaqx)—l), y>a®
Let the initial imperfections be given as a sum of two sinusoidal Jr o, )
terms as follows: €M)= 2 737025 v=a (20)
[ X _[amXx v0> 5
Wo(X)=Tf1(X)+fr(X)=hysin T +h, sin -/ (8) \ aziy(l—cos(aq)\)), y<<a
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with

q=\|y-a’l. (21)

The nondimensional modal displacements,\), (i=1,2) are
introduced:

2 (£ M) =us" (&) +ug(E,N)=[gs+ey (N\)]sin(m§)
2(EN) =UP (&) + Uy(£,0) =[gy+ex(N)]sin(amé).

(22)

tigate several alternative avenues of describing this vector uncer-
tainty, either probabilistically or without recourse to the
stochasticity concept.

3 Probabilistic Analysis

Let the amplitudes of the initial imperfectiomy andg, con-
stitute a random vector with specified joint probability density
function fGle(gl,gz). Capital letters denote the random vari-

With the aid of Egs.(15)—(16) we form a total displacement @bles whereas the lower case notation is reserved for the set of

wr(x,t) or its nondimensional counterpaté,\)

Z(&E M) =wr(X,1)/A=21(£,N) +25(£,N) (23)

with, defining w{)(x,t) the nondimensional displacement

wi(x,t) =w{(x) +w;(x,t) j=1,2 we have
z (M) =wi(x,)/A=v (\)sin(7€)
Z,(E,N) =WE(x,t)/A=v,(\)sin(amé).

The functionsvj(\), (j=1,2) of the nondimensional tima
alone, read

(24)

Y91
y—1
v1(N)=g3(\2+2)12=g;aP' (),

vi(N)=

1
[cosi(rx)— :/] =giai’ V), y>1 (2%)
y=1 (2%)

1
010 = %[;— cos(rm] —galP), <1 (2%)

2

Y92 az}
)= cosiagh)— —! =g.a’(\), y>a
va(N) y_az[ Hagn) Y g.a; '(N), vy

(25d)

va(N)=ga(ya®\2+2)2=ga(\), y=a®  (25)

79
va(N)= az_zy

a2 (3) 2

7—cos{aq>\) =023, (N),  y<a~
(25f)

Since there exist different analytical expressions dgf\) de-

pending on the value of, the total displacement possesses var
ous analytical representations. In particular, five different cas

occur as follows:

z(EN)=aP (Vg sin(mé)+a (N)gy sinamé),  y<1
(26a)
z(EN)=aP(\)gy sin(mé)+a (N)gy sinamé), y=1
(26b)
z(EN)=al’ (Vg sin(mé) +aP (N)gy sin(amé), 1<y<a?
(26¢)
z(EN)=a’ (N gy sin(mé) +aP (V) g, sinamé),  y=a?
(26d)
z(EN)=a’(\) gy sin(mé) +a (V) g, sinamé),  y>a’.
(26¢)

Note that although there are five different cases, each of t
parameters,; or a, have three separate expressions. If the initi
imperfection amplitudeg; andg, are given deterministically, the € B1.B2
design is performed in the manner of the total displacement not
exceed the threshold valwe Hereinafter the cross section of the

column is assumed to be of the circular shape.

The main thrust of this study is an investigation of the effect of
uncertainty in initial imperfections on the resulting design values
of the cross-sectional radius. ¢f; and g, constitute uncertain
variables, the output(&,\) will likewise represent the uncertain
function. Properties of the function(¢,\) depend on the infor-

mation provided about the uncertain variabgs We will inves-
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possible values that are taken by the random variables. We are
interested in finding the reliability of the system, namely, the
probability that the total displacement will remain in a safe region,
in accordance with the Hoff's criterion.

The reliability is defined as the probability that maxé\)
remains in a safe region. For simplicity we fix=5. Hence

Y=maxZ(&N)=maxZ(1/2\)=V(N)+V,(N).
£

FunctionsV1(\) andV,(\) are multiplicative random processes
depending upon the nondimensional paramgter

(27)

Vi(M)=Gaal’(h), (=123 (28)
VoM =Gzad (V). (j=1.23). (29)
Now,

R(N)=Pro —d=<sY=V;(\)+V,y(\)<c). (30)

In view of Eq. (27), the reliability in Eq.(30) becomes
R(N)=ProkY<c)—ProhY<—d). (32)

Equation(31) can be rewritten as follows:

RO =Fyn(GN) = Fy,(—dih) (32)

where Fy , is the probability distribution functions of random
processY, and

Y(N)=Ga (M) +Gzad (\), (33)

indicating that it represents a linear combination of two random
variables with deterministic real-valued positive functions of non-
dimensional time\ as coefficients. The evaluation of the reliabil-
R , as stated in Eq(31), needs the particularization of the joint
ﬁ%obability density function of the random variablés and G, .

We will consider the cases in whidB; and G, are either statis-
tically independent or dependent.

4 Initial Imperfections With Uniform Probability
Density Over a Rectangular Domain
Let the initial imperfections be independent random variables

with a uniform probability density function in a rectangular do-
main (Figs. 1 and 2

f6,6,(01.92)= wr—as B i {91~ 1)’ (91— @)%

xX{(92~ B1)° (9~ B2)°} (34)

1 and G, are confined to the interval§&, e[ a,,a5] and G,

1, respectively(Fig. 2). Moreover, we assume, for the
ﬁgke of simplicity, thaty;>0, 8;>0 (j =1,2). Marginal probabil-
ity densities read

ﬁgere the( - )° indicates the singularity function. The variations of

fe,(91)= {(91—a1)°—(g1— )%

ayr— (35)
1

By B {(92— B1)°— (92— B2)°}.

fo,(92)=

with
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Initial imperfections
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Fig. 1 Description of the structural model

fo.6.(01,02)=fc.(91)fc.(0s). (36) either corner, B, C, or D. In case the line in E¢f41) belongs to
2 ! 2 “regionT', (Fig. 3), the coordinates of the intersection poirts

In order to perform the reliability analysis of the column it isangB* with the edgesAD andAB, respectively, are given by

necessary to find the probability distribution functibg ,(y,\)
of the random variabl& (\) in Eq. (31). With the second term in c—ay' B, c—ala,
this latter equation vanishing identically we obtain A= —F——, l); B*=| aq,

ay)

). (42)
* [(z-ad Mgyray(n) o o
Fya(zN)= fo,c,(t1,t2)dtdt,. The distance®A* andAB* are

BN A =(c-af'py/al)~ay; AB*=(c—a'a;)/al - ;.
By substituting Eq{(35) in Eq. (37) and performing integration, (43)
the reliability function is obtained as

1
a—ay BB

1 1 1 . }

R(M)=

1 ) :

_ Al al) 2
T ~(C—aj’ ' a a
a(zl)a(lj)< Pai—ay)’'B1) }

- o (el e —a) B2
ay—ay BB a(zj)a(ll)

]
a,—ay B~ B1|ayal’
1 1

ay—ay B2 P

3

1 ) )
T algl <C—a(1”a2—a(z”ﬁz)2} £6,6,
2 1
(38)
where
) X212, x=0
X =
00 0, x<0.

Equation(38) suggests several useful conclusions regarding tt
characterization of the reliability. At the initial time instante ] - ] )
=0 (or A=0), we havea(lj)(o):a(zj)(o): 1 forj=1,2,3. We con- Zlc?ﬁwiin Uniform probability density function over a rectangular
clude that if the failure boundanyis set at thew; + 38, or lower,

then the reliability vanishes. This implies that if the failure bound-

ary satisfies the inequality 5.55

c<a;+ B, (40)

no possibility of design associated with nonvanishing reliabilit 5gE
exists for the column subjected to nonzero values of the appli 5
load P. Figs. 3—6 portray some interesting aspects which may |
deduced by investigation of the various terms in B8). We first
observe that each one of the four terms represents the area of
region created by the straight line

(39)

& 1.75

c=a'g,;+aY’g, (41) 1.25

and an appropriate boundary of the rectangular domain of t
initial imperfection amplitudeg,; andg,. Let us consider various
straight lines passing through either of the four corners of tt
boundary, and parallel to the line given in Eg.1). The plane
(91,9,) is subdivided into five regions denoted’;,
(J=1,....,5) (Fig. 3. The broken line in Fig. 3 represents therig. 3 Geometrical representation of the first term in reliability
line in Eq.(41). Four solid lines are parallel to it, and pass througbxpression (Eg. (44))

0.75
0.75

2 2.25 2.5
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2.75 the bracketed expression in E&8) is nonvanishing. By inspec-
_;\\ tion of Eq. (38) the coincidence between this latter term and the
A - ;. areaSypg« a« IS recognized.

2.25 Figure 4 deals with the case in which the straight line in Eq.
(41) belongs to the regiof';. The shaded areaBC* A*, multi-
plied by the above constant value of the probability density func-

8 1.75 tion, represents the reliability of the system. This area is obtained
as a difference between the area of the triangk* A* and the
area of the triangl®B* C*. The coordinates of the intersection

1.25 point C* are

. c—-ay'B,
o.75 C ( a B2 (45)
0.75

whereas the expression of the coordinate8bdfcoincides with
Eq. (42). The side lengths for the triangkeB* A* are then given

Fig. 4 Geometrical representation of the second term in reli- by Eq. (43) and the ones of the triang@B* C* read
ability expression, (Eq. (47))

BB*=(c—a{’a;)/ay’—B,; BC*=(c—ay B,)/al) — a,.

3.25 (46)
The areaSgg+c+ equals
2.75 Specr=(BB*)(BC*)/2=(c—a{ a,—ay'B,)%/2a}ay’
(47)
2.25 and is recognized as the second term in 88). Note that the
& area of the triangléAB* A* coincides with the first term of the
1.75 same equation.
Analogously, the geometrical meanings of the third and the
fourth terms involved in Eq(38) may be deduced by examining
1.25 Fig. 5 and Fig. 6, respectively. In fact, Fig. 5 deals with the case
that the broken line belongs to regibh . In this case the reliabil-
0.75 ity is given by the areeABC*D*D and it is obtained as the
0.75 1 1.25 1.5 1.75 2 2.25 2.5 algebraic sum:

g1
Sgcrp* DA™ Saprar — SgEck — Spp* A - (48)
The first two terms of this expression have been already iden-
tified. In order to obtain the last area in E¢8) we determine the
coordinates of poinD*,

Fig. 5 Geometrical representation of the third term in reliabil-
ity expression (Eg. (50))

a0
C—ay «
_12) 49)

D* = ( Ay, a(ZJ)
Note that the coordinates of the poidt are given in Eq(42).
The area of the triangl®D* A* is so obtained as

Spp#ax =(DD*)(DA*)/2=(c—a{ a,—ay’B;)%2aay’ .

(50)
It coincides with the third term in Eq(38). To determine the
geometric interpretation of the fourth term in Eg8) let us con-
sider the case when the broken line belongs to the relgiofiig.
6). The reliability is given as the product of the area of the rect-
angleABCD and the density d,— a;) "*(B8,— 81) 1. The area
itself equals &,— a1)(B>— B1). Hence the reliability is unity as
expected. On the other hand, in order to identify the fourth term in
Eqg. (29 we represent the aréaBCD as the following algebraic
sum:

Fig. 6 Geometrical representation of the fourth term in reliabil-
ity expression (Eq. (52))

SABCD: SAB*A*_SBB*C*_SDD*A*+SCC*D* . (51)

The first three terms in Eq51) are given by their respective
counterparts in Eq29). The fourth term in Eq(51) may be easily

h Ihhe ;reasArBﬂ*:A* g)ndlfr theltriangIeAB*A* is denoted as a obtained by inspection of Eq45) and Eq.(49). The area of the
atched regiorfFig. 3. It equals triangle CC* D* reads

SAB*AF(AB*)(AA*>/2=<c—aa”al—ag)ﬂozlza&“aé”-(44) Scerpr=(CC*)(CD*)/2= (c—a{ a,—ay’ B,)/2a ) .
(52)

The reliability of the system is determined by multiplying the areh represents the fourth term in E(B8). As is seen each term in
in Eq. (44) by the constant value of the probability density functhe reliability expression has an appropriate geometrical meaning.
tion (ay—a;) " X(B,—B1) L. In this case only the first term in Naturally, if the broken line lies in the regidn, then one imme-
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Fig. 7 Reliability versus nondimensional time, initial imperfec-

tions with uniform probability density

Egs. (26a) and (38)

(D=[1.2,2]1X[1.4,2]),
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Fig. 8 Reliability versus nondimensional time, initial imperfec-

tions with uniform probability density function (D=[1.2,2]
X[1.4,2]), Egs. (26b) and (38)
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Fig. 9 Reliability versus nondimensional time, initial imperfec-

tions with uniform probability density

Egs. (26¢) and (38)

(D=[1.2,2]1X[1.4,2]),
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Fig. 10 Reliability versus nondimensional time, initial imper-

fections with uniform probability —density (D=[1.2,2]
X[1.4,2]), Egs. (26d) and (38)
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Fig. 11 Reliability versus nondimensional time, initial imper-
fections with uniform probability density (D=[1.2,2]
X[1.4,2]), Egs. (26€) and (38)

<25, y=25, y>25. For a specified value of the failure boundary

¢ and the different values of the rat®/ P, the reliability func-
tions are depicted as functions of a nondimensional tmé&or
casey<1 (Fig. 7) buckling occurrence is not a certain event: The
structure may or may not buckle depending upon the system’s
parameters. Remarkably, the reliability does not necessarily tend
to zero with the increase of time. Instead, it gains a minimum
value given by

R(\)=R(#/r) (53)

depending on the valuethat delimits stable and unstable states.
When the nondimensional time reaches the vaitle the dis-
placement of the middle cross section of the system will achieve
its maximum value, corresponding to the least possible reliability.
In these circumstances, the valRéw/r) represents the guaran-
teed minimum reliability that the column may possess.

The main objective of this study is to design the system, i.e., to
obtain the radius of the circular cross sectjonof the column
such as to maintain a prescribed reliabilityup to a preselected

for A\=x/r,

diately deduces that the reliability vanishes. Likewise, if the braime instantt, for a specified value of the failure boundary

ken line passes through the regibg, the corresponding reliabil-

ity is unity.

It is advantageous, however, to view the failure boundeayg a
function of the remaining parameterépq,t,E,L,m), yielding for

The results of sample calculations are portrayed in Figs. 7—Marious combinations of its arguments, the failure boundary cor-
The cases correspond to the five independent expressions for fhonding to satisfactory performance with the specified reliabil-
coefﬁcientsa(l” anda(zj), (j=1,3) in Eq.(29). It is seen from Eq. ity r.. Thus, specifying the mechanical and the geometrical char-
(26) that these cases correspond, respectively<ta, y=1, 1<y

Journal of Applied Mechanics

acteristics of the column and the external load allows one to
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Fig. 12 Design curve c=c(py), t=0.2 uniform probability den-
sity function and unity reliability requirement (P=3000Kg, D
=[1.2,2]X[1.4,2]), Eq. (38)

obtain design curves=c(pq,t) shown in Figs. 12—14. The value

and Eq.(55) takes the following form:

c= a2+ Bz . (57)
Since in Fig. 12«,+ B,=4, the asymptote whepy— = is repre-
sented byc=4. This result is straightforward: An infinite value of
the cross section’s radiysg,; yields an infinite frequency of vibra-
tion of the column. In these circumstances the system will remain
in the same position, represented by its initial imperfection alone.

Figure 13 portrays a design surface: c(c,t) allowing one to
obtain for a specified timé and failure boundary, the required
radiuspg of the cross-sectional area, so that the reliability,isIn
Fig. 13r is taken to be unity. Figure 14 depicts design curves for
various codified reliabilities.=0.8,r.=0.9, andr .= 1.0. Figures
show that smaller values of design cross-sectional radius are
needed when less stringent required reliabilities are imposed for a
specified failure boundary, as it should be.

Let us examine the dependence c(py) in Figs. 12 and 14.
Each figure is composed by three different subregions. Values of
the cross section’s radiysy=<p{@=4/M/a® (Region ) lead to
a load ratio y=a? Therefore, the functionsa{’(pq,t)
and a(z”(pd,t) in the expression of the failure boundacyare
represented by Eq25a) and Eq.(25b). In this case the displace-
ment function maxZ(pq t) is a monotonically increasing function

of the cross-sectional radiyg necessary for a successful perforyith time t. Large failure boundarg, combined with small values
mance is obtained by means of these curves, specifying the va§ene time intervalt where the successful probabilistic perfor-
of the failure boundary. Note that the ratio between the externaiyance is required are necessary for high prescribed reliabilities

load P and the classic Euler’s loaB, defined asy depends
upon the cross-sectional radigs

P _PL> M _4pL? 54
YR, wE  MT e 4

It is immediately observed, in view of E¢R9), that when

lim af(p,t) az+af(p,H) Br=c (55)

P—Pd
the reliability tends to unity from below.
Figure 12 depicts the failure boundaryersus the radiugy for

the prescribed timé=0.5 seconds, and unity reliability. As may

be observed the dependencec(py) has an asymptote at=4,

whena,=2 andB,=2, this numerical result can be derived from

analytical considerations. In fact, whep tends to infinity

lim af®(pg,t)=1, for (j=12), (56)
Pd—
6
Boundary ¢ 4

Radius pog(cm)

Fig. 13 Design surface c=c(p4,t) uniform pro

le.
In casepld<ps=<p{= M the load ratioy belongs to the
open interval[1,a%). The expression of the failure boundary
contains two functions: A trigonometric function fa> (pq,t)
and an expressiona,(ll)(pd ,t), that is monotonically increasing. In
this case too, large values of the failure boundarglong with
small performance times would guarantee the high reliability re-
quirement. To get more insights at the dependence upon the time
t we express the argument of the cosine function in §f), in

view of Eq. (54),
\/azpé— M

Pd
allowing one to get a better look at the influence of the preselected
time t. In fact, the functiona$®(pq,t) in Eq. (25f) attains its

maximum for values ofpy andt making Eq.(58) to equal,
reliability reaches its minimum level. For values of parameters

(58)

€1~

AN

R

WY

Time t (sec)

bability density function and unity reliability

requirement (P=3000Kg, D=[1.2,2]X[1.4,2]), Eq. (38)
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10 T T 5 Initial Imperfections With General Distribution in a
| b Continuous Line r. = 1 Rectangular Domain
8 ! R\ Dashed Line r, = 0.9 Let the initial imperfections possess a general probability den-
o : ’\r Dotted Line z, = 0.8 sity function in a rectangular domain,
ol | D fo,6,(01,92) =Af§ 6,(91,92){(91— @1)° = (91— @2)°}
L]
b [ [
§ y | | X{(92= B1)°— (92— B2)°} (63)
a I : 7 : 1T located in the first quadrant of the plang;(g,). A represents a
2 | | normalization coefficient depending upon the specific expression
i | of the probability density functiomglez(gl,gz) that extends over
! ! the entire plane.
00 : > : p . 5 T 12 The reliability expression, witlz=c substituted into Eq9.37)
Radius o (cm) and taking into account E@63) reads
. . . . - . (c—atyyral’
Fig. 14 Comparison of design curve; uniform probability den- R(\)= dt, AfE o (ty,t)[{ti— 011>0
sity function and different codified reliabilities, t=05 (P —o — 12

~3000Ke, D=l 221xL142D, Ea. 9 —(t1—a)°I[(t,— B1) = (t,— B,)°ldt;

= f [(t2— B1)° = (t2— B2)°1dt;
leading to expression in E@58) to be larger thanr the previ- -
ously achieved minimum reliability is valid. Values pf=p{Y (c—alltyyal)
=4/M lead to a load ratiey<1; hence the expression of the failure X J FE AR 6, (L) [(t— ) (t
boundaryc(pg,t) involves Eq.(25a) for a{)(pg,t). Interestingly,
if the argument of the trigonometric function in the expression of —a,)0]dt, . (64)
a{®(pq.t), bearing in mind Eq(54)

—®

Denoting the inner integral in Eq64) I(t,) Eq. (64) can be

m o Z\F— rewritten as
a (f) m'

Ex= (59) + o
P R(\)= f (t)[(tz= B1)° = (t2= B2)°1d
is larger thanr, for a specified timet and py the reliability N
achieved fore,= 7 is retained. Hence the cosine function in the B2
expression oa{?(py,t) must be replaced by-1. - JB H(tp)dt,
The functiona{®(pg4,t) becomes in this case ' o
B Jﬁzd (c_alll)tz)/a(zl)Af*
@ 1+ pi/M A t . G,6,(t1.12)
ay (pa V)=~ 72 (60)
P X[(ti— a1)°— (t1— @) °ldt; (65)

As may be observedFig. 14, different values of the required |n a high reliability rangec lies in the regionl’, (Fig. 5), in the
reliability r. lead to appropriate asymptotic values. In fact, let Uicinity of a critical valuec* where

design the system for high reliability requiremeifegionT,, _ )

Fig. 5. The expression of the failure boundary as a function of c*=al'a,+ad’B, with (i,j=1,2,3. (66)

reliability, with the aid of Eq.(28) is given b . . . . . .
y a(28)is g y The highest reliability requirement will be obtained when the line

in Eq. (41) tends to pass through the poBit This corresponds to
) valuec=c* substituted in Eq(41). Thus we calculate the limit

c= aza(lj)+,323(2j)_ \/23(1j)a(zj)(1_ re)(ap,— 011)(,32_,31)-(6
1

B _ah) (i)
Evaluation of the limit value of Eq53) for infinite value of the lim R(\) = lim f Zdtzf(C "2 AfE 6. (t1,12)
cross section’s radiugy results in et cctd By - 12
_ 0_ _ 0
lim c=a+ B, 2T (az—an (BB (62) A
pPg—>® Bo ant( (j)/ (j))( —t,)
. . . , :J dtzf i ZAfele(tl,tz)
Equation(62) allows obtaining the asymptotic value of the failure B1 —o
boundary functiorc(pq,t) by specifying the reliability value. X[(ty— a0 (t;— ap)°]dt
The results of this section clearly demonstrate that for high 1T % 12 1
values of required reliability the design ragiy of the cross- B2 ap
sectional area are extremely close. =f dtzf Afg e (tt2)
The following question begs to be asked: Do the design values B -
of the cross section radiysg; depend upon the particular form of STt — a)0— (t: — a\0Tdt
the probability density functiorfg ¢ (9:,9,)? One can antici- [(t=ay™= t a_z> 1dt,
pate, generally speaking, that the designs depend on the probabi- i Bzdt az+<a‘z‘)/a(1”)<ﬂ2*t2)Af* (t1,ty)
listic inputs. Yet, as it will be elucidated, the design in extremely s 2], GGy 11072
high reliability regions is practically independent upon the input ! 2
probabilistic information. X [{ty— aq)0—(t;— a,)0]dt, . (67)
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The inner integral vanishes because integration is carried out in
the interval[ a,,a,+a%/(B,—t,)al’]. However, sinces;<t, RN = fe,6,(t1,t2)dtdt,
<p,, the upper limit of integration is greater than. But in the

interval beyond a, the integrand in the square parenthesis °
vanishes. = [(c-adtpral) 1

Reliability is then given only by the first term in Eq67) = ez dtudty. (71)
yielding el

Double integral in the latter equation will be calculated with the
B2 ay aid of a polar coordinate system whose origin is on the circle’s
lim R(X):f dtzf AT 6, (t1 tp)dt =1 (68) center:
cc* B2 ay
g1=010t+ 6 cOg @) (72)
representing the integral of the probability density function in its 9= oot SiN(¢)
entire domain. In this case of unitary reliability the design value of 290
the cross section’s radiys, is found from Eq.(66). with & polar distance ang polar angle. In this coordinate system
reliability becomes

1
6 Initial Imperfection With Uniform Probability Den- R()‘):lfJ’ prdpng (73)
DC

sity Function: Circular Domain

This section deals with a different shape of the variable domaiwhereD. is the nonhatched area in Fig. 15. Equat{@f) yields
The magnitudes of the initial imperfectio@s ,G, are modeled as 1
random variables belonging to a circular domain on the plane R(\)=1— —[Ag—sinAg)] (74)
(91,92). The joint probability density function is assumed uni- 2m

form as with Ag=¢,— ¢, the angular difference of the phase angjgs

ande, between the polar axi$and the polar directionG,A; and
GoA,, respectively. Polar phase angles and ¢, may be ob-

0.2 g 2< K2
foo (01,0 =1 7K' for (9179107 + (g2~ G20 "<K tained by solving the following system:
192 !
0, elsewhere . . 1 . .
(69) a’ cos¢) +aJ’ sin(¢) = S (c—af'gi-a) g0  (753)
with gy, the abscissa of the center of the ciralg, the ordinate, S°[sir’(¢) +cos(p)]=K? (750)

andK the radius. As may be seen in Fig. 15 we assume, WithQjhere the first equation represents a straight line in the polar
loss of generality, the circle to be placed in the first quadrant @hqrginate system, the latter one is instead the equation of a circle.
the plane ¢,,9,), for (i,j=1,2,3) the straight line System in Egs(75a),(750) has the solution

y=al'()g; +ad (N)g, (70) [ fal+a a1+ [a)' 17— 2
1 2 @1=CO0S - - (76a)
[al"]>+[ay']?
is also drawn in a generic position depending on the values of the . . : :
functiona{’(x) anda3’(n). ot fa(l”—ag)\_/[a(z”]zf[a(l')]z—fz (76b)
According to Eq.(32), in order to find the reliability, it is nec- #2 [a'1?+[a}’]?
essary to integrate the probability density function below thv?/ith
straight line in Eq.(69), or over the hatched area in Fig. 15,
1 ) )
f= R(C*a(ll)glo* ay'g50). (77)
3 In case ofR(\), tending to unity from below, we get from Eq.
(74
2.5 Ap—0 or ¢1—¢,. (78)
Hence the square root terms under the radical in Etf&),(76b)
2 tend to
ad’+al’’ ~ 120", (79)
& 1.5 Thus

f—lay’1?+[ag"1>". (80)
The geometrical meaning of the condition stated in 8¢) can
be shown expressing the system in E@&la),(74b) back in Car-

0.5 tesian coordinates. Thus, bearing in mind E&p) and Eq.(72),
we write Eq.(74) in the form

B ai’g;0+ad 90— al’g; +Ky[al'12+[a))]?

0 1 2 3 4 = - 8la
o 92 a(l.) (81a)
Fig. 15 Domain of integration of the probability density func- (91~ 910°+ (92— 020 °=K2. (81h)

tion (g10=2, goo=15, K=1.0), Eq. (73)
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Fig. 16 Reliability versus phase angle difference, Eq.
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Fig. 17 Comparison of design curves for uniform probability
density function over a circular domain and different required

reliabilities
(86)

t=0.5, P=3000Kg (g10=2, gs=1.5 K=1.0), Eq.

Radius o4 (cm)

Substituting Eq.(81a) into Eq. (81b) we get a second degree
algebraic equation for the unknovgn ,

Gogi— 290+ =0, (82)
with coefficients
(2
Qo= a(zj) ’
. (g | 2Aa'Tg0 28K [a&”]2+[a9>]2) ©3)
ST &P a1
qamg?it | ] gz o [2] gz 22N (2 gk
3 10 a(zj) 10 a(Z]) [a<21)]2

whose discriminarrqf—4qul is identically zero. Two coinciding
solutions of this latter Eq(82) read

ai'K
= glO+ e S T
[a)'1? +[ag'T?

this implies that the straight line in E¢B1a) and the circle in Eq.
(81b) share one common point. Thus we conclude that the straight
line in Eq.(81) is a tangent to the circular domain of the initial
imperfections. Equatiof80) can then be interpreted as the condi-
tion that the straight line in Eq75a) is tangent to the circle in Eq.
(750) (Fig. 15.

In order to design the system with a prescribed required reli-
ability r . we must solve Eq(74) for the angular phase difference
Ag, with r. substituted forR. Figure 16 depicts the curvR
=R(A¢), allowing one to obtain the phase differente given the
value of the design reliability .. For example, for.=0.9, Ag
=1.628.

Having foundA¢ that corresponds to., we proceed to design
the system. In order to obtain the design cureesc(pq) for
specified time and preselected reliability, one subtracts Eq.
(76a) from Eq.(76b), leading to

2)

9y'=9% (84)

10

Fig. 18 Design surface c=c(py,t), uniform probability density function over cir-

cular domain and required unity reliability
Eq. (86)

Journal of Applied Mechanics

(P=3000Kg, g10=2, goo=1.5, K=1.0),
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Ap=¢,— ¢

. 1(fa&i)_a(zi)\I/[a(zj)]Z_'_.[a&i)]Z_fZ) b
(a2 + ()]

e _1<fa$>+a9>¢[a9>]2f[a&‘>]2—f2)_ )
[ad"1+[a)}?
OnceAg is determined from Fig. 16 one can conclude the val® -3
of f from Eg. (85). The solution of Eq(85) for f, in conjunction

with Eq. (77) allows one to obtain the required expression for th 1
design curvec=c(py4) Which reads

c(pg)=2a{(pa)910+ 2% (pa) G20 0.5

+ %J([a&”(pdn%[ag“(pd>]2>[1+cosmso>]

(86) g1

and is portrayed in Fig. 17 for specified tie 0.5 and different Fig. 19 Initial imperfections amplitudes modeled by convex
values ofr,. Figure 18 represents the design surface for uni?nables: anti-optimization design  (g10=2, g»=1.5, K=1.0),

reliability as a functiorc=c(p4,t) allowing one to find the cross- Ed- (100)
sectional radiupy for specified exploitation timeand the failure
boundaryc. _ _
. . . z=gia)’ (M) +gad’(\), (=123 (91)

! Inm.al Imperfections as Interval Variables. Interval whereg,,g, are uncertain variables belonging to the set stated by
Analysis Eq. (90). The set(90) in this expression is convex, hence the
Let the initial imperfection amplitude be represented by a veeppropriate analysis was referred tocag;vex modelingy Ben-

tor interval variable: Haim and Elishakoff7].
The Hamiltonian function for this problem is given as
01=[a1,a;] 87) _ )
_ H=a{"g; +aY g, +h[(91— 910>+ (92— 920>~ K?] (92)
92=[51.82]

. . . . andh is the Lagrange multiplier associated with the condition in
so that the displacement function of the middle cross section 9&_ (82). Necessary conditions for extrema read

the column is an interval variable as well,

_ _ o aH

z=[41,]=lar,@]al’ (V) +[ BBl (V) (1,j=1223), Jg; ~ a1 +2n(01-010=0 (9%)
(88)

with ¢, being the lower bound ang}, the upper one. Sinag;, and

g, are positive, so are the additional displacements. Hence in the

safety requirement condition d<z=c only the conditiore=<c is

operative. System’s design via the anti-optimization technique o 2 _ 2 2

identifies the worst possible reachable condition for the uppermost a_h*(gl 910"+ (927920 "~ K*=0. %)

bound ¢, of the interval variablez. If {,<c, the system will ) —

remain in the safe domain, otherwise it will fail. Expressing the L@ solutions gf eqs(93§1)_, (930), andd (93c), denoted byg,

argument of the functiona{’(\) and a§’()\) in terms of the &M¢92 COMESPONCING fo minimurg, rea

cross-sectional radiusy and the preselected tinteby means of

JH )
0. =ay’+2h(g,—g20) =0 (9%)
92

Eq. (41) we obtain the formal design relation 0= 010+ L(ll) (94)
L=l (pa 0+ B (pa D=C  (=123. (89) Vai+a
Comparing Eq{(89) and .FTq.(5.5) we conclude the}t thg formgr Kal)
matches the design condition in case of unity reliability require- Uo=0so+ -z (95)
ment given in Eq(55). If the uncertainty region coincides with ~/a<1i)z+a(21)2

the domain represented in Fig. 2, then the design sudgeg,t)
represented by Eq89) coincides with Fig. 14. Thus, the anti- It is remarkable that Eq(94) coincides with Eq.(84) which
optimization method and the probabilistic one with highest relrepresents the abscissa of the touching points between the circular
ability requirement leads to the same design values for the crogemain of the random variables in E§9) and the straight line in
sectional radiugy . Eq. (70). Let us investigate the geometrical meaning given by the
Eqgs.(93a), (93b), and(93c) and the results in Eq$94) and (95).
8 Initial Imperfections as Convex Variables: Circular Eliminating parameteh from Eq. (93a) and Eq.(93b) leads to
Domain ay) _ _
Let us consider the case when the information about the uncer- 9= m ot F(ag)gZO_ ay’g.0). (96)
tain imperfection magnitude is given as ! 1 o
(01— 010>+ (G Ga0) < K2 (90) This expression represents a straight line with slapéa’ pass-

917 910 927 920" = ing through the center of the circle. This line is identified as in
whereg is the abscissa angh is the ordinate of the center of Fig. 19 with labels. Equation(96) must be solved in conjunction
the circle andK its radius (Fig. 19. The displacement of the with Eq.(93c). Thus the solution of the anti-optimization problem
middle cross section reads is found as the intersection point of the straight Imend the
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circle represented by E¢93c). There are two intersection pointsalso appears that the uncertainty modeling cannot be made “one
(Fig. 19 denotedA and B corresponding, respectively, to maxi-bit simpler,” to borrow Einstein’s words, than the interval analy-
mum and minimum of the displacement function. In order to deals. Yet in accordance with Whitehead we do not discourage the
with the anti-optimization technique, one must look for the maxi-distrust.” Indeed, the following challenging questions appears to
mum of the displacement function, namely the pdirih Fig. 19; be in order: Can the interval or ellipsoidal analyses describe first-

Egs.(94) and(95) refer to pointA. excursion failure, fatigue problems, wind loads, earthquake engi-
The design problem can be stated differently. Let us consideeering, and a long list of other issues dealt with some degree of
the expression success, recognized at least by some researchers, by the theory of

i probability eE)nd randomdprocesses? These ir:jspiriﬂg quedstions re-
__ a1 (i) (i) \/W main yet to be answered. Yet, results reported in this study appear
92 a%”gﬁ_(al 9108z Qa0 K[aT 1P H[a7 1) (1) 7 encouraging. They provide a direct bridge between the
seemingly opposite techniques. Establishment of identity of de-
signs furnished by the probabilistic and nonprobabilistic analyses
shows that all the analytical roads lead to the same results for the
problem in question.

representing a line orthogonal ®and tangent to the circle in
point A. One may obtain the solution of the system in E) by
solving the system

g1a) +gza'~T=0 (989)

(91~ 9102+ (92— 020 °=K? (980)

where the line in Eq(98a) is perpendicular to line Eq97). The
parametefT is a free parameter that must be chosen so that tg
straight line in Eq(98a) constitutes a tangent to the circle in Eqn
(98b). It may be deduced by inspection of E@4) that the pa-
rameterT coincides with the failure boundary valwe

The value ofT is obtainable by solving Eq$89a),(89b),
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Nonlinear Dynamic Behaviors of a
r.meng | COmplex Rotor-Bearing System

Department of Mechanics

and Engineering Science, This paper deals with the long-term dynamic behaviors of a complex rotor-bearing system

Shangha 20%?;; Llir;;vecr;il;yé with multi-degrees-of-freedom and nonclosed form of the bearing forces. Since nonana-
e lytical bearing forces can be available, to increase the numerical accuracy and decrease

N. Hasebe the CPU _time, a new method is presented to ca_lculate _the Jacobians of th(_a bearing forces

* and bearing forces themselves. The algorithm is concise and the computing efforts spent

on the Jacobians are very small compared to spend on the bearing forces themselves. In
terms of the feature that the nonlinear bearing forces act on the system individually, a
new reduction method and corresponding integration technique is proposed to increase
the numerical stability and decrease the computing time for the system analysis. The
numerical schemes of this study are applied to a rotor system with multi-rigid disks and
two elliptical bearing supports. The numerical results reveal very rich and complex non-

linear behavior of the systerhS0021-8938)0)00802-3

Department of Civil Engineering,
Nagoya Institute of Technology,
Gokiso-Cho, Showa-Ku,
Nagoya 466, Japan

1 Introduction method the nonlinear terms of the reduced system still have the
It is a common knowledge that general rotor systems displ local feature and then a corresponding modified Newmark method
h . : ?yproposed to integrate the responses of the reduced system. The

nonlinear .behawor due to the hydrpdynamlc SlECIS At Conﬁ%?rations that are needed at each step of integrations execute only
from bearm_g clearances, squeeze film (_Jlampers, Se?'s and OIf'small parts of the system equations related to the nonlinear
sources. A jump phenomenon, which typically occurs in a nonlifg, g~ Therefore, compared to the Runge-Kutta method, this
ear system, was first observed by Yamamfitd The subhar- method not only is unconditionally stable but also saves the com-
monic responses in a simple rotor-bearing system was detecﬁging time significantly.
experimentally by Bently[2]. Analytical results also reveal the ™ | the nonlinear analysis of a dynamic system, the Jacobians of
nonlinear behavior of the rotor-bearing systems. Assuming smgdk nonlinear forces are necessary to be used. However, for the
nonlinearity for the bearing clearance, Chil® studied the oc- yeg| bearings, nonclosed form of bearing forces can be available;
currence of subharmonic motions of the rotor using the perturbgerefore, a great deal of computing effort is needed to calculate
tion method. Choi and Noa4] analyzed the coherence of supehe Jacobians. Based on the theory of variational inequalities and
and subharmonics in a rotor-bearing model using a harmonic bfHe finite element method, a new method is presented to calculate
ance method along with a discrete Fourier transform procedutge Jacobians of the bearing forces and the bearing forces them-
which was originally used by Yamaucf]. Ehrich[6] showed selves. The algorithm is concise and the computing efforts spent
the presence of high-order subharmonic responses in high-speacdhe Jacobians are very small compared to those spent on the
rotors with bearing clearance by numerical integrations. Apaskaring forces themselves.
from super and subharmonic responses, aperiodic whirling mo-Finally, a flexible rotor with eight rigid disks and two elliptical
tions in a high-pressure oxygen turbopump of the space shutblearing supports is analyzed. The periodic solutions and long-
main engine were also reported by Chi[@$ as well as Kim and term behaviors of the system are investigated numerically, which
Noah[8]. reveal many interesting phenomena of a nonlinear system.

In rotordynamics, due to the complexity of the nonlinear analy-
sis, the nonlinear models of the system are frequently treated as
simple ones, such as a symmetrical rigid rdiee, for example, . .
[9-11]) or the Jeffcott rotosee, for examplei4,12,13,6,8. In 2 System Equations of Motion
these models the system only has two degrees-of-freedom and tha typical rotor-bearing system is composed of rigid disks, flex-
nonlinear forces of the bearings keep the closed forms. Howeville shafts, and bearings. Using the finite element method),
in practice, the rotor is more complex and the nonlinear forceystem equations of motion can be written as
cannot get the closed forms unless a skariong bearing model
is assumed. There are several publicatiptid—16) dealing with
the order reduction methods of the system. These works study the
periodic solutions of a high order of unbalanced rotor systems and
try to save the computing time. whereM, G, K e R™" andg e R" are the mass matrix, gyroscope

In this paper, a rotor system with many degrees-of-freedom anthtrix, stiffness matrix, and unbalance force vector, respectively.
a nonclosed form of bearing forces is involved. Since the bearif@r a rotor withr nodal points, the displacement vector is of the
forces acted on the rotor individually, a new reduction methogrm
dealing with long-term behaviors of the system, is proposed to
reduce the degrees-of-freedom of the system. By means of this

Mz+Gz+Kz=g(t)+f(z,2,p) 1)

z= [Xl Y1, exll eyllXZ Yo, 0)(21 6y2' XY exrx Hyr]T
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MECHANICS. Manuscript received by the ASME Applied Mechanics Division, ApriIWherexi , yi and Oy, Oy, (i=1,2,...r) are the lateral transla-
28, 1998; final revision, November 26, 1999. Associate Technical Editor: W. K. Ligjons and rotation angles of thién nodal point along the horizon-

Discussion on the paper should be addressed to the Technical Editor, Profegsgr ; ; ; : ; ;
Lewis T. Wheeler, Department of Mechanical Engineering, University of Houstoz,aq and vertical d|rect_|on_, _respecnve(ﬂl?])_. Since the bea”n.g
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0 OPIMD,=0 and O M D =1.

£ (x; :> % V) This orthogonal process can be achieved by means of Gram-

%Ki Y i 'Y' Schmidt method, namely
fy, (XiYin X, Yi) B
. 0 ¢A_¢BE:(I)AR
f(Z'Z): : (2) Taa & . . . .

. whereE=®dgM P, and R is an upper triangular matrix. In this

ij(xj X HY) way, we obtain the new vector sét,, and then the transforma-

fy. (XjY5,%;.9)) tion can be written as
0

Zy Uy q)a 0 [UaJ
=[P, P = 7
el ol o
WherefXi andfyi are the horizontal and vertical oil film forces of

the bearing acted on thigh nodal point of the rotor. When the Whereu < R" andu, e R™. Substitution of Eq(7) into Eq. (3)
order of the vector components is rearrangeded not do in and then the left multiplication of®,,®g]" gives the reduced

practice, to simplify notations, Eq(1) can be partitioned as equations
Mo Mgy {z]+ Ga  Gap (za Ka  Kap {za [uam] 4, © [uam} Ao B {ua<t>}
ML, MyllZ) |-Gl Gyllz) KL, Kyllz ()] [ =0T Apjluc)) |ET Apfluc(t)
ga fa(zaxza) [qa(t)} [f;(ua’ua)]
= - n 8
oo+ ® o5 ®
If the system has bearings them,, f,(z,,z,) e R" (n,=2s) are where
of the form T T T
T A=D,GPy, Ap=D,G, Py, O=D,GDg,
Za:[xlvylv'“ lxsvys] (4)
oo A=DjKD,, E=D KDy,
fxl(xlvylvxlryl) a TATTA ATTB
fyl(xllyllxerl) f;(ua,Ua)=¢;fa(¢auavq)aua)v Qa=CDI\91 qC=CI)E;gb,
fa(za.22)= f - ®) Thus, the number of the equations of the system has been reduced
XS(XS Ysi%sYs) fromn(=n,+n,) tom(=n,+n,). Itis evident that the nonlinear
fy (Xs.¥s.Xs.Ys) effects definitely remain while the reduced system still has the

. i ) form of local nonlinearities, which has an important advantage
Generally only a few bearings are involved in the system, thus Eglyring the integration procedures.

(3) is typically a high-order dynamic system with local nonlinear
effects. Since much computing time is needed for a high-order
nonlinear system, it is natural to reduce the degrees-of-freedom of ) ) )
the system if the decrease in accuracy of the system responses isNonlinear Forces and Jacobians of Journal Bearings
small. Nelson et al[18], Mclean and Hahi14], Shiau and Jean |5 nonlinear rotordynamics, a shair long bearing model is
[15], and Ntaraj and Nelsofi6] have dealt with the order reduc- commonly used so that closed form of the bearing forces can be
tion techniques to study the periodic responses of the unbalanggghieved. For the bearings used in practice, however, nonclosed
rotor with the nonlinear bearing supports. Here a concise afgim of the bearing forces can be available and then numerical
more efficient reduction method for the rotor with the nonanalytiz|culations have to be done. The relax method and finite element
cal bearing supports is presented. method are commonly used to calculate oil film forces of the
As shown in Eq(3), only components of, e R" are directly journal bearing. Nevertheless, since the Jacobians of the bearing
SUbjeCted of the nonlinear fOfCGS, therefore truncated modal traﬂﬁces are also required in the nonlinear ana|ysis7 many more cal-
formation can be used to reduce the degrees-of-freedomy, of culations have to be involved. There are two methods to calculate
€R™ (n,=n—n,). In order to get the basis vectors of the transthe Jacobiangwhich appeared as the dynamic coefficign@ne
formation, first, the following two eigenproblems are solved: s the infinitesimal perturbation methaf19—-21) which solves
- - - partial derivatives of the Reynolds equation with respect to the
KOA=MDpAp (6) lournal displacements and velocities. The other is the finite per-
K D= Mo A t_ur_bation me_thod[22,2]]),_ which calculates_the Jacqbians from
b= b= M= b b - finite force differences with respect to the journal displacements
The nxn, matrix ®, andn,x n, matrix ®, are the two eigen- and velocities. It is evident that the finite perturbation method is

mode matrices with not suitable for the nonlinear system due to its poor accuracy. In
this paper an efficient method is presented which calculates the
CTJXM Dp=1, EI’)I\KEISA:KN cngbq;b:L CDEKb‘I’b:Ab- Jacobians of the bearing forces simultaneously with the bearing

_ forces themselves. When the subscripts indicating bearing num-
The ny,xXn, matricesA, and ngxXn; Ay are the two diagonal bers are ignored, to simplify the notations, the nonlinear forces of
eigenvalue matrices. one bearing in Eq(5) can be written as
Expanding®,, into CIJB=[3> ] one can identify o
b fx=1(%Y,%,Y) )
OEMP =DM D=1, fy=fy(xy.%y)’

However,dg is not orthogonal tab, , therefore a new vector set These forces can be calculated by integrations of oil film pressure
®, should be established so that following orthogonal conditiormn the whole oil fields of the bearin@ee, for example[21]).
are held: That is
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Bearing Arch

Fig. 1 Sketch showing one bearing arch of a journal bearing

o o where A=[a;;]e R"™", B={b;} eR". The components of the
f(Xy,%y)= P(X,y,X,y)-sin 6dQ matrix A and vectorB can be calculated by Eql2) and (13),
e (10) namely
£, 06y %Y)= 7J J' p(X,y,%,¥)- cosodQ aij=a(gi ),  bi=b().
o

The discrete inequalityl7) is equivalent to a linear complemen-
where the pressure functignis governed by the Reynolds equa-tary problem([23]): find non-negative vectof8,§=0 such that
tion for laminar flow,(} is the oil field of the whole bearing, and ~ . T
6 is the angle from the vertical direction to the film locatitee Ap—B=7 and Gp=0. (18)
Flg l) For the bearing used in praCtice, cavitation of the oil f||mUS|ng Comp|ementary iteratiomgé]_]), Eqs(18) can be written as
leads to a Reynolds boundary condition in the Reynolds equation.

Yl e
ap qaq { 0 Bq A+ 49

It was deduced[23]) that the Reynolds equation with the Rey- [App Apq
whereP, ,4.,.>0. From Eqgs(12), (13), and(15), it can be con-

nolds boundary condition is equivalent to following variational A A

inequality: Findp € K such that

a(p,q)=b(a); VaeK ) cluded thatA is the function ofx, y andB is the function ofx, y,
where X, y. Therefore Eq(19) can be written as
ap d ap ad A B=B S\
a(p,q):f f hs(ﬂ_gﬂ_(;+’32(9_f %)dg (12) AXY)P=B(X.y,XY) (20)
Q where
is the symmetric and elliptic bilinear form dag(Q) X H3(Q). Aos(xy) O BL(x.y.%.9)
A(X,y)= 0 I}; B(x,y,xyy):[ P 10’ , ]
b(Q)=J J (b-g)dQ (13)
Q

After P is solved and substituting E¢L6) into (10), one obtains
is the linear functional on dual space Idﬁ(Q).

n
K={peH}Q)|p=0 in O} (14) fx(xyy,X,S’):_El Pi-si=s®  (s=[s1,5, " ,8]")
=
(21)
is the subset of the convex cone Idﬁ(Q), which is a Sobolev n
space. f s =D B.r =117 = T
In the above equationg is the length-to-diameter ratio of the y(XY.%.Y) Zl Pi-ri=r'P  (r=[ry,ra,-+.ral")
bearing, the oil film thickenk and variableb can be written as in
the dimensionless form where
h=1+xcosf—ysing (15) Si:f J ;- sin6dQ, fi=*f f i-coshdQ. (22)
b=3(x cosf+y sin )+ 6(x sin +y cosh). @ @

By means of the finite element method, the functiprcan be  According to Eqs(21), the Jacobians df, andf, with respect

expressed as to journal displacement, y) and velocities X,y) are
n of,  oafy
p=2>, Biti=P"¥ (B=[P1.P2. - Pul"r=Lb1 Y2, th]") ax ay | [s"Pyx, S"P
i=1 = y :
(16) aty oty | LB 1Ry
whereP; and ¢, (i=1,2,...n) are the pressures of the nodal 2 23)
points and global interpolating functions of the finite element, ¢ f
respectively. Substituting Eq16) into inequality (11), one ob- Q ‘9__X
tains the discrete inequality: Fiffi=0 such that X ay _[STﬁx, ST‘E’&/}
G'AP=G'B  VG=0 17 oty oty | [r'Bx, 1By
ax Y
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I w I I I I I I w4 I &:3‘[ J lﬂi COS@dQ, 3_:3f f lﬁi SII’]HdQ

= 1T 1 T T 1T T = o y o (26)

Fig. 2 Sketch of the rotor-bearing system for calculation b b
—.'=6J J i sin6dQ), —.'=6jJ i cosad ).
Table 1 Mass and Inertia of Disk D1-D8 X Q ay Q
Disk No. D1 D2 D3 D4 D5 D6 D7 i .
%9 It is evident that Eqs(26) need not be recomputed because they

Masgkg 22 30 34 36 38 40 42 22 resemble Eqg22).
Inertiakg-m? 0.12 0.62 0.74 0.82 0.98 112 13 0.12 esemble Eqs22)

The computing works of above algorithm are mainly spent on
finding the matrixA and vectorp by the complementary itera-
tions. Since the perturbed E@4) has the same coefficient matrix

wherep,= 7P/ dx, Py= P/ dy, Pi= b/ 9x andpy = Jp/dy have to A as the original Eq(20), it is evident that few calculation works

be solved first. Taking partial derivatives of H@O) with respect join when perturbed Eq€24) are solved. Therefore, the comput-
to x, ¥, X, Yy gives the following perturbed equations:

AlDy By Px Byl=[—AB+B,,—Ap+B, By ,By] (24)
where A,=gAldx, A,=dAldy, By,=aBlox, B,=aBldy, B;

=9B/dx and B,=dB/ay, the components of which can be ob-,

tained by derivation of Eqg12) and (13), namely

ing time spent on the Jacobians is much less than those spent on
the oil film forces themselves.

Integration of the Reduced System
In nonlinear analysis, the responses of the system are com-

dgaij _da(yi i) o h2 cosd f7_¢if7_¢j+ﬁz I IY; monly integrated by the Runge-Kutta method. However, due to
X X Q a6 a0 IN I\ nonanalytical function of the bearing forces being involved, an
unconditionally stable algorithm is needed. Otherwise the algo-
day  da(y ) rithm will be interrupted because the journal may go out of the
ay ay bearing at a certain step of the integration procedures. In accor-
dance with the local nonlinearities of Eg&), the Newmark
_ 2o o O I I Y method(see, for examplg25]) is adopted in the following modi-
=-3 Qh sind| = =5 B 7 on |92 (29)  fied form. From timet to t+ At, the integration equations can be
written as
-0.892 0.3898
-0.8925 t 0.3897 |
0893 | 0.3896
-~ ~ 0.3895
& -0.8935 &
;6 \E/ 0.3894
-0.894
=~ 0.3893
-0.8945 0.3892 }
-0.895 0.3891 |
-0.8955 0.389
4 6 8 10 12 14 16 18 2 4 6 8 10 12 14 16 18
n, n,
Fig. 3 Leading Floquet multiplier versus n, for w 494 rad/s
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Fig. 4 Journal orbits of two bearing stations calculated by a different reduced model for
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where
A, E
Ex A,
A 71 A =4 !
a+aAt2|+af7At a H+aAtO
- 1 1 :
:T— @) T —— [
- aAtO Apt aAtZIJr aAtAb
Ta| | da—Us—A.0,—00;
T 7| At 5t it Tt (28)
[P g~ U,—Apl.+0'dy

'fa(uta+At) — f; (utaJrAt ,bUE;rAt‘F Uta)

and where 0.5 6<1, «=0.25(0.5+ )2 are the control param-
eters to get a stable algorith(this study choosea=0.5, §=1)
and
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=t 1 1o 1 it
U=~ are E“k_(ﬂ_l)“k
<t o t 4 -t 4 ot (kmae)
Uk:_ Kuk—(a—l)uk— \ — E)Atuk
(29)

Equations(27) are the nonlinear algebraic equations, so itera-
tions are required. Since the nonlinear terms in E2#). are only
related tou‘“t the iterating efficiency can be improved greatly.
In fact, the followingn, order of equations can be turned from

Egs.(27),

ALub =gt +F,(ubr Ay, (30)
where A,=A,—EA;'E*, §.=G,-EA,'G.. The Newton-

Raphson method gives the following iterating procedures:

t+At

Ui = ugi = [Dy Fa(ugid) — A0t

t+At
aua k

)

At | F o/ tHAtY R
X(anrfa(ua,k ) A ) (31)

t+At_t
ua,O =Us,

(k=1,2;-
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Fig. 8 Orbits of station D1 for several subharmonic motions
where guantity of the calculations for each iteration step is saved but also
of . of . the iteration steps for the convergence are decreased greatly. In
D, fa(uy)=d! a(Za,Za) +b a(z.a,za) ®,. (32) contrast with the Runge-Kutta method, this method is much more
tadimal Al gz, 9z, @ stable and efficient for the present system.
Once ut+At is obtained, u‘“t can be easily calculated by the For unbalance responses of the rotor systém the external

force vector is of the form
followmg linear equations:

A ut+A1,q _Bxy t+At (33) g(t)=w+g, coswt+gsSinwt (34)

When the gyroscope matrix is ignoredl,, is diagonal, and then wherew is a constant vectdmostly generated by gravity or gear
computing works can be greatly saved. force9, g., gs are the unbalance force vectors, ands the ro-

By means of the above technique the nonlinear iterations orthting speed of rotor. So E¢8) is a periodic system with period
need to be executed on thg dimensional scale. So not only theT=27/w. The periodic responses of the system can be computed
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by the shooting method and the stability of the responses canibhg the rotating speed as=494 rad/s, the periodic solutions of
determined by their characteristic multipliers, the so-called Flehe unbalanced system were calculated for several values. of

quet multipliers([26]). Figure 3 shows leading Flouget multiplierotedp,) againstn, .
Figure 4 shows journal orbits at two bearing stations for some
5 Numerical Examples and Results differentn,. It is seen from these two figures that the accuracy of

o o the results increases as more eigenmodes are taken in the reduced
The unbalance response of a rotor with eight rigid disicted model and reaches high precision whgs-12, since the results

D1-D8 and two bearinggnoted B1 and BPwas analyzed nu- of n,=12 and 14 are almost identical. This is because higher order
merically (see Fig. 2 The shaft(diameter 0.2 m, length 3.6 m, modes are nearly unexcited by the unbalance forces. Therefore, in
mass density 7850 kgfinYoung’s modulus 2.08 10" N/m?, and  the following calculations, the 16 degree-of-freedom reduced sys-
shear modulus 8.2410°N/m?) is equally separated by disks and€m is accepted and the modal displacements are arranged in the
bearings and each interval is divided into four finite elements. $6d€TUa1,Uaz,Uaz,Uas Up1, - - - Up1o-
the finite element model of the system has 37 nodes and two ofit should be pointed out that by the present method the com-
them are supported by nonlinear bearings. Two elliptical bearing4ting process is carried out smoothly, no matter how many steps
(pad arch: 160 deg, length-to-diameter ratio: 0.6, clearance to p4e taken in one period although the nonclosed form of the bear-
dius ratio: 0.003, elliptical ratio: 0.4, and oil viscosity: 0.022ng forces are used. However, if the Runge-Kutta method is used,
N-sec/m) are used at B1 and B2 stations. The mass propertiestBg integration process will be interrupted unless many more steps
eight disks are listed in Table 1. Three unbalance valhasing (depend on forcing frequency and the highest natural frequency of
total mass of rotor, Jsm eccentricity, and the same rotating phast€ reduced systenare taken in one period. N
angle are located at the D1, D5, and D8 stations. The calculatedThe unbalance responses of the system loses stability as rotat-
results are shown in the dimensionless form. The related unit i§g speed increases to 5171 rad/s when two complex conjugate
time, displacement, and velocity aremfw, Cpj,, and wcy, Floguet multipliers leave the unit circle transversely. So a quasi-
wherew is rotating speed of rotor angj,;, is the top clearance of periodic bifurcation appear§27]). Beyond the bifurcation point
the elliptical bearing. unbalance responses become unstable. A jump phenomenon,
It is evident that the accuracy of the calculated results depeniaiBich typically occurs in a nonlinear system, is detected dor
on how many eigenmodes are taken in the reduced model. In gap720 rad/s. In Fig. 5, the time series of the velocities at station
case, the system has 148 degrees-of-freedom and four of themRteappears to suddenly jump from a low level of unstable peri-
directly affected by nonlinear forcesn€148n,=4). So the odic response to a high level of stable quasi-periodic response.
degrees-of-freedom of the reduced system depends;prthe Figure 6 shows the jump figures of the journal orbits at stations
number of the second set of eigenmodsse Section 2, the D1, B1, D5, and B2, respectively.
degrees-of-freedom of the reduced systemraren,+n,). Tak- Apart from the jump phenomena, the system shows a various
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Fig. 10 Time series and corresponding FFT spectrum of first order of modal velocity for a chaotic state
(w=12623 rad/s)

order of subharmonic responses as well as quasi-periodic tieese torus and torus bifurcation figures.

sponses. Figures 7 and 8 give the horizontal velocity responseginally, as rotating speed reachesde- 12623 rad/s, a chaotic
and orbits of one nodal poirstation D) for the subharmonic motion appears (Lyapunov exponents: A\;=+1.36, )\,
(1/7, 1/5, 1/13, 1/8, 1/11, and J/&otions. This phenomenon of =03, ...<0; [26]). This chaotic state is illustrated by the time
subharmonic motions, in which the ratio of the forced frequencseries of the first order of modal velocity and corresponding FFT
and the response frequency becomes rational, is called phase l@sgectrum(see Fig. 10 Logarithmic plot for FFT spectrum is used
ing or mode locking[27]). In fact, in the frequency range 5174—to highlight components with low power levels—an impotent fea-
11340 rad/s a large number of closed branches of subharmonice of chaotic spectra. The time series is obviously irregular. The
motions(locked statels occurring in very tiny frequency intervals, FFT spectrum is broadband, and contains substantial power at low
can be found. Comparing to subharmonic motions, quasi-periodiequencies. A sharp component@t2 is also present. Though
responses are more frequently encountered in that frequercyroad spectrum does not guarantee sensitivity to initial condi-
range. The quasi-periodic solution far=6751rad/s appears ations, it is, in practice, a reliable indicator of cha®29]). Figure
torus attractor in Poincareection, and asv increases to 8423 11 shows trajectory of four typical modal phase plains, which
rad/s, a torus bifurcation happe(j28]). Figure 9 shows projec- present very beautiful patterns—a typical characteristic of a
tions of Poincarenaps onto the two typical modal phase plains oftrange attractor.
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6 Conclusion periodic bifurcation was found for a group of bearing parameters.

After the bifurcation point a jump phenomenon was detected and

By a hybrid of two sets of e|ger_1m0des of a rotor-bearing SY¥he system appears a large number of closed branches of subhar-
tem a new modal reduction technique was presented. The advan-

: onic motions(mode locking cas@soccurring in very tiny fre-
tages of the reduction model are that not only the degrees- 1ency(rotatin ( S ee)jintervgls Az the rotatign s egd inzreases
freedom of the system are greatly reduced but also the nonlingar Y gsp ' Ing sp - -

. - system undergoes torus, mode locking, torus bifurcation

terms in the reduced modal system remain the local features, tes and finally qoes to chaos
modified Newmark method, which is more suitable for the prese ’ Y9 ’
system than the Runge-Kutta method, is developed to integrate the
responses of the system. The new method is unconditionaff¢knowledgment
stable_ and the nonlinear iterations only neeq to be executed on therhis work was partly supported by the Chinese National Key
equations related to the nonlinear forces. Since the number of #8gsic Research Special Fufido. G1998020316
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raquiar | The Kinematics of Wheat Struck
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e-mall farquhar,\(/clbumtfée,&g A nonlinear model of the kinematics of a wheat stalk struck by a wind gust is developed.
em. Individual stalks were excited from each of many directions and observed by videopho-
J. Z. Wood tography. The underdamped flexural response involved anisotropic circling motion that
r = can be reproduced by a nonlinear system of ODEs. In the model, the horizontal path

Northrop Grumman Corporation, traveled by the grain mass is described in principal coordinatesaixd X, . The four

Baltimore, MD required constants are stiffnessesdk,, in these directions, linear viscous dampidg
J. van Beem and couplir_lg strengtlﬁ_ related to a torque imposed by Wipd drag. This stem torque can
International Center fE>r Maize and Wheat cause nonlinear coupling if both,Xand X, are e>_(C|te_d an(_:i if K=k, , _such that damping
Improvement can vary by 3(_) percent over each cycle_. The dlre(_:tlonallty of the single stalk may promote
Mexicd |nterplapt collision, which could have important integrated effects on crop behavior at
larger size scaleq.50021-8936)0)02303-5
Introduction be less susceptible to root lodging in weak or water-saturated

es_oils. Wheat scientists must balance the competing constraints im-
f)osed by stem rigidity and flexibility in order to select the best
Yvarieties for a given growing environment.
: O . . The ultimate goal of this research is to use applied mechanics to
Lodging can inhibit crop development, promote fungal infectiony ity the interaction between the atmospheric boundary layer
and complicate harvestin(7]). Modern cereal crops grown with 54 wheat. Surface winds can induce large-scale plant motions
high fertilizer inputs are often more susceptible to lodging thag,ied honami([23]). Similar phenomena can be induced by tidal
older varieties grown by traditional method8—10]). Steady im- . ,rrents passing over submerged aquatic vegetéa). In both
provement of lodging resistance is an important priority in wheggses, the synchronous aeroela@tichydrodynamit canopy be-
breeding science[11]). Lodging reduces grain yield 10 to 30hayiors([25]) involve coherent phase-separated vibration of many
percent worldwide[12]). Even the lower estimate is a significantpjant stalks([17]). The physics of these wave-like motions, and
fraction of total human caloric intake, and lodging is a majofheir possible relationship to lodging, are not fully understood. We
limiting factor on global food production. can begin to address this issue by examining the kinematics of
Lodging is typically precipitated by wind combined with rain orwheat at a smaller size scale. The objective of this study was to
irrigation ([7]). The particular structural failure may involve buck-develop a model of a single stalk struck by a gust from an arbi-
ling or splitting of the lower stenf[13]), or rotation of the root trary angle.
relative to the soil[14,15)). In either case, the driving force is the
drag exerted on the grain mass at the top of the slender st
([16]). Wind tunnel study has shown that velocity profiles near th@réthOdS
surface of a model canopy are similar to a plane mixing layer Standard horticulture was used to grow two varieties of wheat
([17,18)). The turbulent flow is dominated by intermittent hori-using seed obtained from the International Center for Maize and
zontal eddies and mean velocity drops rapidly closer to the groudéheat Improvement, in Mexico. All plants were grown in a
([19]). The top of each stalk is subjected to successive impulsimate-controlled glasshouse at the USDA-ARS Research Center
loads from varying directions. in Beltsville, MD. Both varieties are suitable for irrigated envi-
Wheat is a member of the monocot or grass faniB0]). A ronments althougiBaviacorais more resistant to lodging than
maturing plant consists of one or more tillefstalks growing Bacanora([21]). Planting density was equivalent to 400 seeds per
from a single root(Fig. 1). The hollow culm(stem is nodally ~square meter. The growing medium was a 4:1 clay soil and sand
segmented and supports an inflorescence called the spike. THiture. Natural light was supplemented with artificial lighting
grain bearing organ is typically covered with needle-like stru@nd cooling to obtain 14-hour photoperiod and 22°C nighttime
tures called awns. Each of the several leaves has a tubular b&§eperature. )
that ensheathes and supports the stem. The spike increases in si2&€ free-vibration response of selected tillers was observed us-
and mass as the tiller matures. This increases wind drag, digl videophotography. All tests were conducted on maturing
presumably, increases lodging tendericy6]). There are observ- plants at the timepoint called dough development or Growth Stage
able differences in the lodging resistance of different varieties 8f-82((26]). A straight stalk was chosen from each of ten pots per
wheat ([14,21)). In addition, environmental factors affect theVariety. All leaves were clipped close to the stem, and white track-
lodging resistance of each variety to varying degres,22). In "9 markers were painted on the nodes and spike. The other tillers
practice, wheats with short stiff stems are often more resistant!fpthe same pot were cut at the ground level. The pot was draped

stem buckling([8—11)) while wheats with compliant stems mayWIth black cloth to minimize background clutter.
The tiller was subjected to a series of impulse tests. The test

— apparatus consisted of a high-pressure air so(sceba tank a
1To whom correspondence should be addressed. .
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF pressure_ regmal.[or’ a computer-_controlled vaIV(_e, and a speC|aI
MECHANICAL ENGINEERS for publication in the ASME GURNAL OF AppLED ~PNEUMatic gurtFig. 2). The gun discharged a horizontal pulse or
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Julygust from a 2-mm-diameter nozzle. Flow visualization using wa-
30, 1999; final revision, Feb. 4, 2000. Associate Technical Editor: N. C. Perkingar dr0p|ets showed the flow expanding within a 12_deg conical

Discussion on the paper should be addressed to the Technical Editor, Profe! ; ; ;
Lewis T. Wheeler, Department of Mechanical Engineering, University of Houston%c'{:i(/e'c’pe as it raveled towards the tiller. The gun was aimed at

Houston, TX 77204-4792, and will be accepted until four months after final publthe spike from. a standoff di_Stance of 0-50 m to ensure that the
cation of the paper itself in the ASMEDIRNAL OF APPLIED MECHANICS. tiller did not hit the gun on its return swing. A Macintosh PM

Wind and gravity are the dominant forces acting on most t
restrial plant specief1,2]). Structural failures that permanentl
displace a cereal crop from the vertical are calthing ((3—6)).
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7100 computer with National Instruments data acquisition boards
used LabView software to regulate the number, duration, and
spacing of the gusts. In practice, four identical 0.250-second gusts
were delivered at 25-second intervals for each angle. Each gust
produced an underdamped flexural oscillation that was similar to
the response observed in the field on a breezy(day 5-10 m/s
winds). By convention, thex-axis was aligned with the gust, the
y-axis was at right angles to theaxis in the horizontal plane, and
the z-axis was vertical.

The kinematic response was monitored by a tripod-mounted
S-VHS video camer&Sony #SSC-S20 Referring to Fig. 2, the
camera viewed the potted plant beneath a plane mirror inclined at
45 deg(the mirror is not shown The setup allowed the camera to
record the underdamped plant vibration in sideview%) or in
the topview &-y) reflected by the overhead mirror. Each tiller
was brightly illuminated by 500-W Fresnell lens stage lamps. A
pinhole iris was used to maximize depth of field. The X8d0
pixel image was tightly framed using an electric zoom I€Rain-
bow #M-II with #A-I1l controller). The video capture rate was 60
frames per second. The shutter speed was 0.001 second.

Tiller orientation relative to the gust was varied by rotating the
pot. Tests were performed at each of 24 orientations at 15-deg
increments relative to an arbitrary reference marked on the pot. In
practice, the projected motion seen in the horizontal image plane
captured the essential features of the underdamped transient.

Pilot study showed that the path in duplicate tests was repro-
ducible within one or two pixels, so only one typical test was
analyzed at each angle. A digital copy of the first five seconds of
motion was made using a Sony Time-lapse VCR play&VT-
S3100. The A/D conversion was performed using the built-in
digitizer on a Macintosh PM 8600 computer. A digital clip for
each angle was saved as a TIFF stack of 300 fi@@GsMB per
stack. The first field in each stack showed the tiller just before
gust impact. NIH Image software was used to measurexthe
coordinates of the spike marker. The pixel coordinates were found
using semi-manual techniques because a skilled human operator
(JZW) was more effective than pattern recognition algorithms,

Fig. 1 Key structures of a single wheat stalk with regards to compensating for varying marker illumination,

shadowing, and reflectivity. Pixel size was calibrated using a steel

rule placed in the field of view. Spatial resolution was in the range

of 1.1 to 1.7 mm per pixel.

gust . Forward differencing of the video-based position data was used

to calculate velocity and acceleration at each time-step. Simula-
tion of the model response relied on numerical techniques out-
lined later in context. Various methods are available for assessing
the significance of differences between experimental sample
means([27]). In general, the probability that any given differ-
enceA is meaningful increases as the number of observations
increases. It is common practice in hypothesis testing to report the
probability that a difference is significant, or alternately, to report
that the difference is not significatabbreviated N.S. in Table) 1
because it did not attain a pre-selected probability level. In the

present study, significance was sefpat0.001 and the compari-

Fig. 2 Camera view of synthetic gust test apparatus sons of means were performed using confidence intervals based

Journal of Applied Mechanics

on the Student t test statistif28]).

Table 1 Average (standard deviation ) of physical properties for two varieties

#tillers m(g) L (m) x (m) v (m/s) a (m/s?) w, (Hz)

10 2.54(28) 391(043) .233(.043) 198(09) 21.8(29) 068

10 2.70(33) .641(058) .582(.086) 1.84(07) 25.0(3.4) 125

p value = N.S. p<0.001 p<0.001 N.S. N.S. p<0.001

N.S. indicates not significant (see text).
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Results—Experimental The indicated angl® was measured relative to an arbitrary pot

reference. Note various patterns of symmetry. For example, the

In the sideview, each gust excited an underdamped oscillatiBB . . 8
A -deg path mirrors the 150-deg path with respect to the horizon-
that lasted 10 to 20 seconds. The peak velogitgnd the peak tal axis. The intricacy of the global path arises from the presence

accelerationa were not significantly different between the two - . . . .
varieties(Table 1. In contrgast the )t/iller length., the peak dis- of seve_ral vibration modes excited to varying degrees according to
placemeni, and the frequency of oscillation along the gust axigUSt alignment.

Lt e . . Linearization is the key to rational analysis of many physical
w, were significantly different. These and other differences be- . . e
tween the two varieties were accentuated in slow motBavia- %roblems but linear theory cannot adequately explain the kine

cora exhibited a lopsided flopping motion with the spike oscillat-matIC behavior typified by Fig. 4. In contrast, the ensuing devel-

ing at a higher frequency than the stem, wiBecanoraexhibited ;’Fl’mer_" shows that simple nonlinear theory can provide very use-
. h ) - insights.

a faster motion with the spike and stem oscillating as a unit!
Figure 3 shows the first quarter cycle of motion for a typical tiller
of each variety. Each set of interconnected black dots shows seyen .
tracking markers at 1/30 second intervals. The leftmost set shéygSults—Modeling
the neutral position prior to gust impact, the rightmost set showsThe salient feature of the free response was the anisotropic
the maximum deflection after the gust, and the asterisk indicatgigcling exhibited by some but not all tillers. We therefore seek to
the timepoint at which the gust ended. The space between suceksrelop a model that can explain both the origin and the variabil-
sive markers is a measure of velocity. One can perceive highsr of this directional behavior. The shape of the pathlines in Fig.
frequency mode shapes superimposed on the fundamental madg strongly angle-dependent. This kinematic anisotropy was
but these did not persist past the first half-cycle. Hence, the rguantified using a special deviation metric
sponse signal over most of the experimental record was domi- .
nated by low-frequency behavior. _ lyil

The flexural response showed a clear dependence on gust ori- k= “ Ixl+p’
entation for some but not all tillers testéce., 12/26=60 percent
For example, Fig. 4 shows the-y pathlines traveled by the spike which was based on the raw integer valued pixel coordingtes
of a tiller identified asBaviacora-2 Each pathline is a two-point andy; at time-pointt; . The summation spanned the first 300
fit to the unsmoothed position data. The record length is five sdime-points after gust impact. It is conceptually useful to consider
onds, the spatial resolution is 1 mm per pixel, and repeatability 4st0 have Sl units of m/m. The resolution facer1 avoided zero
1 to 2 pixels. The gust always traveled from left to right since gugienominator errors ix;=0.
alignment relative to the tiller was changed by rotating the plant. For each variety, 4/1840 percent of the tillers exhibited
< 1.0 for all angles. In these cases, the spike behaved like a one-
degree-of-freedom oscillator aligned with the gust. Let us view
these tillers as a degenerate case of a more general situation. Spe-
cifically, for each variety, 6/1660 percent of the tillers exhibited
wide variations ink, which varied between zero and some value

0
/ greater than 2.5 as the pot was rotated relative to the gust. For
example, Fig. 5 shows as a function of gust angléfor the tiller
designatedaviacora-2
1 The spike motion recorded in the topview had three degree-of-
freedom(two translations, one rotatipnLet us assume that the
motion seen in the image plane was the sum of at most three
isochronous vibrations, implying that the periodicity and decay of
Baviacora Bacanora each were independent of amplitud&9]). In this way, the infi-

_ _ ' o o nite degree-of-freedom response of the physical tiller can be ide-
Fig. 3 First quarter cycle of motion for two varieties (sideview )  alized as that of a finite degree-of-freedom harmonic oscillator.

1)
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Fig. 4 Experimental pathlines for  Baviacora-2 (topview ). The angle @ is measured rela-
tive to an arbitrary reference.
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Fig. 5 Special deviation metric as a function of gust angle for Fig. 7 Frequency of vibration along the gust axis as a function
Baviacora-2 of gust angle for Baviacora-2

For an initial linear model, let us fix the rotational degree-of- E.
freedom and assume that tkey motion of the spike is that of a X;==exp(—Ait)sin(B;t) (3)
massm constrained by two orthogonal spring-and-dashpot units Bi
(Fig. 6). This lumped parameter model has two explicit degregyhere A, = ¢ w; and Bi= w;(1—¢%)%5for i=1 andll.

of-freedomX, and X, with associated stiffnesls <k, and vis- e required constants were obtained for each tiller as follows.

cous dampingC, and C, for i=1 or Il. The physical gust of tpe frequency of vibration along theaxis was observed to settle
known duration was then idealized as an impuie) acting at 4 5 ifferent value for each angle. The average value at afgle
t=t,. This timepoint would occur just after the real pulse ende

or i=1 to 24 was defined as
implying about 0.250 seconds between the first frame of the video 4

data and the model start timig¢. For each gust orientatioin the 2m(q—3)/4 30m(q—3)

impulse must form some some as yet undetermined apgleith wx(61)= (7—p)/60  —p Q)

the compliant degree-of-freedoX) . Note that¢ has an intrinsic ) ) ) ) . .

relationship to the tiller function, and must therefore be distifvherep was the time-point at which the spike reached its maxi-

guished from the anglé measured relative to an arbitrary labo-MUm upwind positiorat 3/4 cycle T was the last time-point in

ratory reference. the five-second record, ampwas the noninteger number of quar-
If 5is the Dirac delta andF,=1, the impulseF(t)=F,8 (t;) ter cycles in the digital clip. Figure 7 showis, as a function of

can be resolved into componefits=cos¢ andF, =sin . If the angle 6 for Baviacora-2 The extrema of the discrete function

two degrees-of-freedom are decoupled and the system is lightfpre assumed to be very close to the resonant frequeaciasd
damped, the equation of equilibrium is wy, , since the minimunw, should occur whe is 0 or 7 radian,

and the maximunmw,, should occur whenrp is #/2 or 37/2 radi-

ans. For other angles, at least two vibration modes may be excited,

with each contributing to the perceivedmotion.

. . It had been tacitly assumed that two damping factprand ¢,

wherei=1 or II, the damping factorg,=C,/(2w;m) %”Sd ¢ were required to describe the linear viscous damping of motion

=Cy /(2w m), and the resonant frequencies=(k,/m)~>and  ziong the two principal directions. Experimental estimates of

w;=(k; /m)®®. Note that the extrema af occur when the gust is these parameters were obtained using the logarithmic decrement

aligned with eitheiX; or X;; . ratio approach(30]) for the four orientations aligned with one of
~One can sef,=1 andm=1 after recognizing that the pre-the principal directions. The assumption of isochronicity required

dicted model path is geometrically similar for &llandm. Equa-  that each degree-of-freedom had constant stiffness, so the value of

tion (2) can be solved foi=1 and Il using Laplace transform the log decrement ratié=27 £ was based on the average of the

methods with initial conditionX;(t;) =0 andX;(t;)=0. The par- downwind log decrements

ticular solution has the form

. . F.
Xi+ 200X+ 0fXi=8(ty) . @

&0

5('):Inw, i=(2,3,...5-1) (5)
Xir and the upwind log decrements
. %)
y 5(”=Inm, i=(1,2,...r-1) (6)
wherex(® is the maximum downwind displacement on cyicknd
kit x1) is the maximum upwind displacement on cygl&@he limitss
andr denote the last complete downwind or upwind half-cycles.
< While the values ofs;, and &, could be different, they were es-
sentially identicalwithin three percentfor each tiller considered.
This motivated the additional constraitit=¢{,, where, was a
¢ constant. In turn, this implie€,, =(w, /®,)C,, which reduced
m x the number of independent parameters in the model by one. Rao
I Foy kr , [30] has shown that the damping factor of an harmonic oscillator
can be interpreted as the ratio of energy lost per cycle to the total
energy in a vibrating system. Hence, it may be conceptually useful
Cr to consider{ to have Sl units of J/J.
kr<km \Xl The path of the linear model had to evolve at the correct fre-
quenciesw, and o, but it could still drift away from reality
when the physical system did not exhibit linear damping. The
Fig. 6 Diagrammatic representation of a two-degree-of- experimental record was short, so large discrepancies were only
freedom model. detected under certain conditions. In particular, the damping of
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Fig. 9 Undamped stem torque as a function of time for two

. . . varieties (normalized by maximum value over interval )
Fig. 8 Foreshortened topview of stem as viewed from the

spike

the compliant axisX, was lower and damping of the stiffer axishere a positive value acts counterclockwise. In Fidl & posi-

X, was higher in some cases, but only when the gust formed fff @nd tends to swing the spike towards the sKiff-axis. At
oblique angle with both principle axes. later times, the upper limit of is the undamped torqug, which

This observation revealed the limitation of the linear theory$
Fortuitously, the canonical form of the model can be modified to = ~ . ~ — i~
address this concern. Let us now view the recordeg motion as 17'3[(”” coday )sin(@,t) — @, cos @ tsin@, )] (9)
that of a system in which dissipation can arise either fidn where 8= —sin 2¢ Cp/2 must be zero if the gust is aligned with
I|near.V|scous damping due to stem flexion, or fré@n nonllnear one of the principal axes. Ib=w,+w, anda=w, —w,>0, it
damping due to stem torque imposed by spike drag. To illustratgn be shown that
the physics, Fig. 8 shows a foreshortened view of a stem with four ~
internodes obtained by looking down from the spike. The stem is ~ . .
rooted at the origin and the spike is attached at the shaded cross T=7[bsinat—asinbt]. (10)
section. The flexural deflections ath>U,,, and spike dradrp ) o )
exerts force components, and F,, on the moving stem. This For example, a tiller oscillating ab=0.9 Hz andw, =1.0 Hz is
exerts a net torque that induces a twist argleet us assume that Subjected to a small torque varying at 1.9 Hz and a larger torque
the linear damping is proportional to viscous fofeg, and that Vvarying at 0.1 Hz. Figure 9 shows the undamped torque over the
the nonlinear damping is proportional to the stem torque. Hendist five seconds based on the averageand o, of both variet-
the variation in the magnitude and line of actionfg is respon- 1€S- In general, the imposed torque is a nonperiodic function of
sible for the model nonlinearity. time. _ _ _

The drag on a rigid body exhibits quadratic dependence onThe nonlinear model preserved the basic structure of the linear
airspeed but a flexible aeroelastic struct(25]) can reduce its model but related the torque to two nonlinear products involving

frontal area as relative velocity increases. This is the situationSg:hintragf?:fct{ogfalstgr%gtrgfsdgfg:]eﬁ?eort?énzgﬁoﬁg?\:’eesd otrlzge t;gwg—e
for a green wheat spik@16)), for which ying q P

} recognized without explicitly adding the third degree-of-freedom
Fp=—CpX 7 & With this conceptual advance, the damping parameters in Fig. 6
. . must vary in a specific nonperiodic manner, which is described by
where the drag facto€, is an empirical constant. Moreover, Eq. (8) within a single scaling factor. For unit impul§e,=1 and

spike drag is not in general aligned with the velocity vector angh spike massn= 1, the coupled equations of equilibrium are
can therefore subject the stem to torsional as well as flexural

acceleration. 5(, +(2¢w,— BX| )X, +k X, =8(t1)cose, (11)
The time dependence of the torque can be appreciated by set-

ting £=0 (indicated below by a tilde If the tiller in Fig. 8 is 20 _

moving back to the neutral position shortly after the initial pulse, Xy + 2Ly + BX) Xy, + Ky X = 8(ty)sin ¢, (12)
Eq. (7) indicates that drag componeriigandF,; are more or less 5 _ _ _
proportional to velocity components varying with cosat and Wherek;=w{ for i=1 or 1. The coupling strengti provides a

w), cosayt, and acting at moment arms varying more or less witieasure of dissipation due to stem torque, and has Sl units of
sin®,t and sinat, respectively(Recall that the undamped modelradians per second per met@able 2. In general, the nonlinear
frequencieso, and®,, are the resonant frequencies of the lightlydamping can only be large when flexural anisotropy and deflec-
damped physical systejif we assume that the drag factBp, is  tion are both large. The nonlinear term in Efj1) carries a nega-

isotropic (i.e., a scalgy the stem torque is tive sign and tends to reduce the decayXpfmotion. In contrast,
. ) the nonlinear term in Eq12) carries a positive sign and tends to
T=—=Cp(Xy X=X X)) (8) increase the decay of;, motion.

Table 2 Average of model parameters required to fit kinematic response for
two varieties

Variety #tillers K(m/m) Kk (N/m) Kk (Nm) C(J7J) P (radsec/m) Unique constants

Bacanora 4 0.73 0.142 0.142 0.09 0 ki G

6 3.54 0.110 0138 0.05 0.024 Koy ey &
Baviacora 4 0.47 0.041 0.041 0.08 0 ki §

6 2.71 0.058 0070 006 0.141 Ko ki G, B
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Fig. 10 Simulated model pathlines for  Baviacora-2 (compare to Fig. 4 ). The angle ¢
is measured relative to an intrinsic reference.

Equations(11) and(12) comprise a system of coupled nonlin-variety calledBaviacora the response was flexible, amglwas
ear ODE’s with four constantk,, k;,, ¢, and 8. Approximate only close to zero wher,,<1. For the otheBaviacoratillers,
solutions for the interval zero to five seconds can be found ntie coupling strength was large, the deviation metric varied with
merically by exploiting initial similarity to the linear system. Aangle, and nonlinear damping had a detectable influence on the
first trial solution of Eq(11) for X, att,=t,+ At was obtained by evolving path. In the next section, we show that the nonlinear
setting X;, equal to the value that satisfied linear Eg) for i  theory provides a unifying description of the observed behavior
=Il. Equation(12) was then solved foK,, by settingX; to the while providing a plausible explanation for the considerable di-
value just obtained. Newton-Raphson refinement was continueetsity between plants.
until X; andX,; changed by less than 0.01 percent on successive
interations. The solution was then marched forward using a simi- .
lar procedure but starting with th¢ from the previous step. The IScussion
time-stepAt was progressively increased from 0.005 to 0.02 sec- A wheat tiller is a flexible living structure subjected to dynamic
onds. This algorithm was effective because the damped solutieind loads. We found that its behavior was unexpectedly rich in
was smooth. No more than ten iterations per step were requiretechanical complexity. A horizontal gust caused lateral deflection
Since the offset between model angl@nd experimental angleé of the cantilevered stem. The ensuing transient was highly repeat-
was unknowna priori, simulations were performed at 1-deg in-able but sometimes involved a strongly anisotropic response. Ni-
crements to allow accurate indexing of model and experimentdas and Moor{31] have also reported that garlic stalks can ex-
pathlines. hibit qualitatively similar circling motions. Previous studies of
The parameterk,, k;;, and { were determined from the ex- wheat have deemphasized this flexural directiona(ig2,32).
perimental record as described above. In the linear model, tHence, the real novelty of the present study lies in its quantitative
coupling strengthB was equal to zero. In the nonlinear modgl, treatment of the kinematic anisotropy of a wheat stalk.
had a recognizable physical meaning but also served as an adjusFhe free-vibration response to a gust was dominated by the
able model parameter. The best match between model and expleri+-frequency modes. The low ripple and high repeatability of the
ment was obtained by optimizing the fit when the gust formedrasponse signal made it reasonable to neglect forced-vibration re-
45-deg angle with both principal directiofise., when the nonlin- sponse due to random excitation. Serial tests showed that the reso-
earity was strongestAt these four orientations, the last cycle ofnant frequencies were slightly lower if the leaves were not re-
the model path was defined backwards from the end of the digitabved or if the soil was watered, but these observations did not
clip. The optimalB was chosen using a least-squares criterion theetract from the generality of the conceptual model.
minimized the angular mismatch between the long axes of the lasiComparison of Fig. 10 and Fig. 4 shows that the nonlinear
model and experimental cycles. model can reproduce the essential nature of the physical response.
Figure 10 shows the predicted pathlines for comparison to tAé&e nonlinear model has two explicit flexural modes coupled by
experimental data shown earlier in Fig. 4. The quality of fit i&n implicit torsional mode. The third mode allows drag to dissi-
typical of all tillers. In Table 2, the tillers are grouped by varietypate additional energy and the associated torque redirects the ver-
and by deviation metric. The average values of the model paratital plane of vibration towards the most compliant axis. Interest-
eters are given for each of the four groups, which represent all R@ly, the torsional stresses would be largest in the lower stem,
tillers studied. For either variety, the kinematic response could béhose properties have been correlated with lodging resistance
allocated to one of two groups. In the first categoky,,, was ([21]).
small, the flexural response was isotropic, and the damping wa€ach of the four model constants has tangible physical mean-
linear viscous. For these cases, only two unique model constaimg. For example, an isotropic response implies thatk;, and a
were required. In the second categary,,, was large, the flexural stiff response implies thg8=0. However, more than half of the
response was anisotropic, and the damping exhibited varying @=aviacoratillers exhibited compliant anisotropic behavior, which
grees of nonlinearity. In this case, three or four of the modetquires the use of all four constants.
constants were unique and nonzero. The degree of kinematic anisotropy could only be assessed by
There were consistent differences between the two varietiehserving the physical response to a gust from several angles.
For the variety calledacanora the flexural response was stiff, While some stem internodes had slightly elliptical cross-sections
and the coupling strengtf® was always close to zero. For theand all spikes had an irregular flexible geometry, no single mea-
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sure of structural anisotropy was able to explain the orientatior{$1] Gent, M. P. N., and Kiyomoto, R. K., 1998, “Physiological and Agronomic
of X, and X,, inferred from the functional anisotropy. For this ___ Consequences of Rt Genes In Wheat,” J. Crop Productiopp. 27-46.

h f | ith simil élz] CIMMYT, 1996, “CIMMYT 1995/1996 World Wheat Facts and Trends,”
reason, the responses of two plants with similar appearance were Technical Report, International Center for Maize and Wheat Improvement.

often unexpectedly different. The model suggests that this kingi3] schulgasser, K., and Witztum, A., 1992, “On the Strength, Stiffness and Sta-
matic variability between plants could be due to the subtle quan- bility of Tubular Plant Stems and Leaves,” J. Theor. Bidb5 pp. 497-515.
titative interplay between torsional and flexural vibration moded14] Crook, M. J., and Ennos, A. R., 1994, “Stem and Root Characteristics Asso-

. . . "~ f : _ ciated With Lodging Resistance in Four Winter Wheat Cultivars,” J. Agric.
Functional diversity within a plant population could have impor Sci., 123 pp. 167-174.
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Dynamic Singular Moments in a
Perfectly Conducting Mindlin
Plate With a Through Crack Under
a Magnetic Field

Following Mindlin’s theory of plate bending of magnetoelasticity, we consider the scat-
tering of time-harmonic flexural waves by a through crack in a perfectly conducting plate
under a uniform magnetic field normal to the crack surface. An incident wave giving rise
to moments symmetric about the crack plane is applied. It is assumed that the plate has
the electric and magnetic permeabilities of the free space. By the use of Fourier trans-
forms we reduce the problem to solving a pair of dual integral equations. The solution of
the dual integral equations is then expressed in terms of a Fredholm integral equation of
the second kind. The dynamic moment intensity factor versus frequency is computed and

the influence of the magnetic field on the normalized values is displayed graphically. It is
found that the existence of the magnetic field produces lower singular moments near the
crack tip.[S0021-89360)02603-9

for magnetoelastic interactions in perfectly conducting bodies

Introduction
If an electrically conductina material is used in a stron maéa[lg’]) is applied. The theory includes the effects of rotatory inertia
y 9 9 nd shear. The plate is engulfed by a uniform magnetic field di-

netic field, we must consider the effect of induced currents. Tlilgcted normal to the crack and subjected to incident waves that

dy;‘f?‘m'cubehf?""t’f dO];) ar;helectrlcally cofnduc:mg elastic F;'.at?. 'Egnerate vibratory motion in the transverse direction of the plate.
sufliciently atiected by the presence ot a strong magneuc Negy, o transforms are used to reduce the magnetoelastic crack

([1_3])‘ De'_slgn and development of superconductlng SUUCtUrgsonlem to a pair of dual integral equations which can be further
require basic research on electromagnetic fracture mechanics. ced to a Fredholm integral equation of the second KB
stress intensity factor approach of linear elastic fracture mechanfﬁat is amenable to numerical calculations. Dynamic moment in-

has proved to be very successful in predicting the unstable fragpgity factors are determined for different wave frequencies and
ture of brittle solids([4,5]). When cracked conducting materialsymplitudes of the magnetic field.

are subjected to strong magnetic fields, the same approach is ex-

pected to apply. Shindo et 46,7] have considered the scattering

of time-harmonic flexural waves by a through crack in a conduct- . . .
ing classical plate under a uniform magnetic field normal to tHdagnetoelastic Thin Plate Bending
crack surface for two special cases, perfect conductivity andwe consider an electrically conducting elastic plate of thickness
quasi-static electromagnetic field. For general references on ma@: The coordinate axes andy are in the middle plane of the
netoelasticity, we refer to the monographs of Md@m Maugin plate and thez-axis is perpendicular to this plane. It is assumed
[9], and Parton and Kudryavts¢¥0]. that the plate has the electric and magnetic permeabikities,

In this investigation, the scattering of time-harmonic flexurak g g5x 1012 F/m,k=ko=1.26< 10 ® H/m, respectively, with
waves by a through crack in a perfectly conducting Mindlin platg, and «, being the free-space permeabilities. The conducting
under a uniform magnetic field is analyzed to show the effect 9 ate is permeated by a static uniform magnetic f|b||6j We
induced current. At low temperatures many materials become giénsider small perturbations characterized by the displacement
perconducting, that is, perfectly conducting. Although the solwectoru produced in the plate. The magnetic and electric fields
tions of the present paper are concerned, in principle, with tigay be expressed in the form
infinite electric conductivity, they can be used to obtain an ap-
proximate appraisal of the influence of finite electric conductivity H=Hq,+h

E=0+e

at low temperaturegsee Appendix A A frequently encountered
ereH andE are the magnetic and electric field intensity vec-

crack shape is the surface crack. The solution of the through cr@%
tors, andh ande are the fluctuating fields and are assumed to be

problem may be useful in studying the surface crack problem
the application of the plate theory-line spring met . The ; : ;
ppicat b ¥ pring et t%the same order of magnitude as the particle displacement
K Neglecting displacement currents compared to the conduction

results for the case with a partial crack can be estimated by
formulation of the conducting plate containing a through crac T . . -
gp g g rents, we have the following linearized field equatirs):

under arbitrary membrane and bending loads and the solution®Y

@

the corresponding plane-strain problem for the conducting me- curl e= — koh )
dium with an edge crack. Mindlin's theory of plate bendiht2]) ’
curl h=j 3)
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sz,x+0yz,y+azzz+(jXBO)z:Puz,n (8) So{eg(X,y,ih,t)—ez(xxy,ih:t)}zpz (18)
where a comma denotes partial differentiation with respect to the

€ —_ —

coordinate or the time, j is the current densityp, is the free h %y, =h,t)=hy(xy,=h,H)=0 (19)
electric charge density,= «kgH, is the magnetic inductiory is i (xy,£h,)=0 (20)
the mass density, o, Tyy s T2, 0xy= Oyx s Tyz= 0y, 0 2= 0y;) ae
are the elastic stress components, amg, ¢y ,u,) are the compo- oi"ze(x,y,ih,t)—{azz(x,y,th,t)+a§"z(x,y,ih,t)}=0
nents ofu. In a moving conductor the current is determined by N
Ohm’s law as o2y (%Y, Eh ) —{o,(X,y, =h,t) + o5 (X,y, =h,t)} =0

i =o(etu,xBy) ) aMe(x,y, = h,t) —{o,xy, =h,t) + oM(x,y,*h,t)}=0

’ 21

whereo is the electric conductivity. The mechanical constitutive @)
equations are taken to be the usual Hooke’s law where Boyx,Boy,Bo,), (&x.€y.€,), and (i ,hy,h,) are the com-

ponents ofB,, e, andh, respectivelyj, is thez-component of,

— \
O= MUy xF Uy y U 2) + 20Uy j3 andj are the components of the surface current defitgnd
Tyy=N(Uy T Uy + U, ) +2uUy ps is the surface charge density. The Maxwell stress components
Uzz:A(Ux,x+uy,y+uz,z)+2ﬂ'uz,z are "
Ty= (U y+ Uy ) (10) 022= koHozN; = koHoxhx— koHoyhy
: , w
O'yZ: /,L(Uy’z-i- uz’y) O'ny KoH Oyhz+ KoH Ozhy (22)
Oyxz= Uzt Uy 7) ) Uy'x: koHoxhz+ koHo Ny
where\, u are the Lameonstants. where Ho,,Hoy ,Ho,) are the components éf.
Outside the plate the external fields are solutions of We assume that the plate is permeated by a static uniform mag-
o R netic field of magnetic inductioBy= koHq in they-direction. By
curl €=~ kohy (1) using Mindlin's theory of plate bending12]), the rectangular
curl he=0 (12) displacement components, u,, andu, may assume the forms
div h*=0 (13) Ux=zWy(Xy,t), uy=z¥y(x,y,t), U=V, (xy,t) (23)
div =0 (14) In which W, represents the normal displacement of the plate, and

_ _ W, and ¥, denote the rotations of the normals about hand
where the superscrigtdenotes the external value of the quantity.axes.

so labeled. From Egs.(2), (15), and (23), we obtain the magnetic field
If we let o—, we get from Eq(9) intensity components as
e+ kU XHp=0. (15) hx:Houxy:ZHO\I,xy

The linearized boundary conditions are also obtained as Ho
hy: - HO(uz,z+ ux,x) =- 11—y Z{(l_ 21/)‘1’)@(— V\Py,y}

ex(x,y, £h,t)—e(x,y,£h,t)=0
16
e§(x,y,ih,t)—ey(x,y,ih,t)=0 (16) h,=Hou,,=Ho¥,,
(24)
h3(x,y,=h,t)—h,(x,y,*h,t)=]J . . .
. o (17) wherev is the Poisson’s ratio. From Eq3) and (24), we also
hy(x,y,=h,t) —hy(x,y, =h,t)=—]; have
|
) 1
Ix= hz,y_ hy,Z: HO \Pz,yy+ E{(l— 21/)\I’X’X— V\I’yyy}
jy:hx,z_ hz,x:HO(\Px,y_\Pz,xy) . (25)
] 1
1= hy,x_ hx,y= —zH, \I’x,yy+ E{(l_ ZV)\Px,xx_ V\I’y,xy}}
The Lorentz body force components per unit volume are given by
. . , 1
(X Bg)x=—rKoHoj .= ZroHg \IIx,yy+ E{(l_ Zy)q’x,xx_ Vq,y,xy}
(jXBg)y=0 . (26)

) . 1
(JXBg),=koHojx= KOHCZ){WZ,yy"— rv{(l_ ZV)qfx,x_ quy,y}}

The bending and twisting moments per unit length,(,M,, ,M,,=M,,) and the vertical shear forces per unit leng® (Q,) can
be expressed in terms df,, ¥, , and¥, as
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h
M= j 2oy dz=D (¥, ,+ vy )
—h

<

h
yy=f hZcryydz=D(\If”+ vWyy) (27)

" (1-v)
Mxy: Myxz hZO'Xde: TD(\PYVX—F q’x,y)

J

h 2
Q= j hUXZdZ: Eﬂh(\Pz,x‘F\Px)

. (28)
Qy= f hUyZdZ: F,uh(‘lfzyy-i- ‘I’y)

whereD =4,h%/3(1- v) is the flexural rigidity of the plate and
is the shear modulus of elasticity. Now if we multiply E¢®). and

(7) by z dzand integrate from-h to h, we shall obtain the results

My xt xyy —Qx= ph \Ijxtt Myx (29)

2
MyyxtMyyy—Qy= Ph Wy =My (30)

The momentsn,, andm,, are derived as

h
mxx:h{ozx(XaYvhvt)_o'zx(XrY: ht)}"'f . 2(j X Bg)xdz

h
myy=h{o,(X,y,h,t) — o y(X,y,—h,t)} + f_ Z(j X Bg),dz
(31)

If Eq. (8) is multiplied by dz and integrated from-h to h, we
obtain

Qx,x+Qy,y:2hpq,z,tt_q-
The loadq applied to the plate is derived as

(32)

h
q=ozz(x,y,h,t)—azz(x,y,—h,t)+f (jXBg),dz. (33)
—h

Substituting Eqs(27) and(28) into Egs.(29), (30), and(31), we

have the equations of motion for a Mindlin plate under the |nf|u-

ence of magnetic field

S
E[(l_ V)(\Ijx,xx—’_\l,x,yy) +(1+ V)(I’,x]_q,x_q,z,x

4h?p 6
=2 V™ nz_;mm (34)
S
E[(l_ V)(‘I’yvxx‘f‘ \I’y,yy)-i-(l-‘r v)(I),y]—‘Ify—\I’Z'y
4h?%p 6
= 77_2# Wy~ 772/,Lh Myy (35)
h?p 1 6
\IIZ XXJF\I’Z yy+q) T R‘I’ WT,Lth (36)
in which
(I)=‘Ifxvx+‘lfy'y. (37)

The rotatory inertia and transverse shear effects are associate

with R andS as given by

R_h2 6D
T3 T 7uh’

(38)

Journal of Applied Mechanics

Problem Statement and Method of Solution

Consider a perfectly conducting Mindlin plate having a through
crack of length 2 as shown in Fig. 1. The crack is located on the
line y=0,/x|<a and the cracked plate is permeated by the mag-
netic field Ho,=Ho,Hox=Hg,=0) of magnetic inductionB,
= koHo normal to the crack surface. Incident waves giving rise to
moments symmetric about the crack plane0 are applied:

wi=0
W=V qexp{—i(ky+ot)}
W=, exp{—i(ky+ wt)}

where the superscript stands for the incident component,
(Vy0,V¥,0) are the amplitudes of the input wavdsis the wave
number, andb is the circular frequency. Substituting E9) into
Egs.(24), we obtain

(39)

Hoz¥ o exp{ —i(ky+ ot)} (40)

hl = —ikHoW o exp{ —i(ky+ wt)}
The field Eqs(12) and(13) in the vacuum can be written as

h7,—hy,=0
hi,z_ h;x= 0 (41)
hy x—hg,=0

hix-i- h;e,’y-‘r h;Z:O. (42)

Outside the plate the external fields are solutions of E8.and
(42). Solutions of these equations which vanishzat+«~ and
have the wave factor expi(ky+ot)} are

he'=0

he'=iA; exp( —kz)exp{—i(ky+wt)}  (z=h)
=—iA,expkz)exp{ —i(ky+wt)} (z=-h) (43)
he'=A, exp —kz)exp{—i(ky+wt)}  (z=h)
=A, expkz)exp{ —i(ky+ wt)} (z=—h)

whereA; andA, are undetermined constants.
Boundary condition19) leads to the determination &f; and

A1=A2=_|kHszo equh) (44)

From Egs.(21), the stress boundary conditions on the plate sur-
faces are

Oz~ KOHO(hy_ h;?), Ozx

=0,=0, (z==h). (45)

Fig. 1 A through crack in a perfectly conducting Mindlin plate
and flexural waves
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Making use of Eqs(40), (43), (44), and(45) renders the stress componenf'zg(x,y,ih,t) and aizy(x,y,ih,t)
oL XY, £ )= — ko HohS'(x,y,=h,t) + KoHoh‘y(x,y, *h,t)

+KOH k\I,ZO+ K0H01 kh\PyO eXF{_|(ky+ wt)} . (46)

oL Xy, Eht)=al,(xy,=h,t)=0

From Egs.(31) and(33), we obtain where the superscrifgstands for the scattered component. Like-
wise, the plate displacements, moments and shears can also be
m =0 m =0 found by super.posing the incident and scattered parts and the
X vy ] (47) results are obvious. Only one quarter of the plate needs to be
q'=—2koH2Zk(1+kh)¥ o exp{—i(ky+ wt)} considered because of symmetry. For a traction-free crack, the

_— . . quantitiesM,,, M,,, Q, must each vanish fox<a andy=0.
Substituting Eqs(39) and(47) into Egs.(35) and(36) yields The boundary conditions for the scattered field become

o \* 8 1 1 2
(kh)( )—{(——+ w)(kh)3+—(kh)

cok 31 M5,=0 (y=0,0=x<w) (52)
4 w)®> 8 1 S_ _
+ §(kh)2(1+ kKhhe| 5| +371 2(1+kh)h, Qy=0 (y=0,0sx<®) (53)
2 - .
2 2 My, =—M, =—ikDV¥ sexpg —iwt) (y=0,0=x<a)
+T1—(kh)3+—(l+kh)h = (48) \P;:O (y:O’agx<oo) ’
(54)
2 2 2 _ . .
S In what follows, the exponential time factor expivt) will be
= +2(1+
! 6 Vyo= [ (kh)+2(1+khhe 2(kh)( ]\PZO omitted as it always appears with the quantitpV¥, as indi-

(49) cated in Eq.(54).
We assume that the solutiotls , W, , andV, are of the forms

\

in which c,= (u/p)*? is the shear wave velocity and

he= KOHS//L- (50)
The effect of the magnetic fielH,,=Hy, Hox=Ho,=0) on the
flexural waves is discussed in Appendix A. The dependency of the 2 .
flexural waves orkh for three directions of the magnetic field  y (x y)= = f B.(a)exp— v,

: vi(a)y}cog ax)da

(Hox=Ho, Hoy=Ho,=0; Hoy=Hg, Ho=Ho,=0; Ho,=Ho, g ™= : :
Hox=Hoy=0) Is also discussed in Appendix B.

22 [* _
Vo= 3 fo Aj(@)expl— yj(@)y}sin(ax)da

The complete solution of the waves as diffracted by the crack is 2 * _
obtained by adding the incident and scattered waves, i.e., Po(xy)= ;121 L Cj(a)exp(— yj(a)yjcogax)da
. J
W (XY, ) =T (X,y, 1)+ T5(X,y,t1) (55)
V(XY ) =W (Y1) + WXyt where A; (@), Bi(a), Ci(a), and y,(«) (j=1,2) are the un-
y(XY:0 iy(X y:) ;’(X vt (51) known ftJJnctionsJ to be életermined Ijater. It can be shown that the
Py, 1) =T,(xy,t) + P, (x,y,t) solutions f5,h{ ,h) satisfying Eqs(41) and (42) are given by
|
2 z * @ )
e__ a4 o 22 1/ ;
hx P 121 J;) {azf ,ij(a)}llzalj(a)eXp[ VJ(CY)Y}EXF[ {a Yi (a’)} ZZ]SII’I(aX)da
(z=h)
2 (56)
=- 32 jw+ azj(@)exp— yj(a)ytexd {a®— y{(a)}*z]sin ax)da
TiE1 Jo {a®—y{(a)}27 : :
(z=—h) )
22 (= (a) )
h§:;j:l f a? —7;’( )}1/‘alj(a)eXp{*VJ(Q)V}EXF{*{“Z*712(a)}1lzz]cos(ax)da
(Z>h)

(57)
) f e ne )}maz,(a)exp{ yi(a)ytexi{a®=y(a)}2]cog ax)da
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2
2
=)

(z=h)

_21 J'O ay(a@)exp{— yj(a)ytexd {a?~ 7j2(a)}1/22]005(ax)da

(z=—h)

where the unknowna,;(a) anday;(«) (j=
ated from the boundary conditiori9) at |z| =

Boundary conditiong19) lead to the determlnation @)
anday;(a@) as

1 2) are to be evalu-

alj(a/):azj(a): _H07j(a)cj(a)

xexd{a’~y*(a)}"?h] (j=1,2. (59)
Making use of Eqs(56), (57), and(59) renders the, ymagnetic

intensity componentlg(x,y,=h,t) andh$ y(Xy, £h,t)

\

H
he(x,y, = h,t)= +—2 f 2 f‘;yéaail,zc:(a)

X exp{— yj(a)y}sin(ax)da
= Heyf(@)

= a1

o{a

X exp{— yj(a)y}cod ax)da )

, 2 . (60)
h§(x,y, =h,t)= I;E

j=1

From boundary condition&5), we have

h,t)= = koHohS(X,y, = h,t) + koHohy(X,y, £ h,t) )

2
2
2

j=1

T, XY, E
* 7,(a)
0 {a’

xexp{—yj(a)y}cos(ax)da >

)

= iKng

(a2 Ci(@

h
- E{(l*ZV)\IfX’Xf 1A%

o(XY,£ht)=0,(X,y,£h,1)=0 )
(62)

From Eq.(33), we obtain

vi(a)

~ (a)}l’zc(a)

5 [t

X exp{— yj(a)y}cod ax)da

q=2xoH3 h\pzvyy+

(62)

Substituting Egs(55) and (62) into Egs.(34)—(36), in which we
neglect the moments,,,m,, , yields

ag(@)7}(a)+bg(a)yj(a)+co(a)=0 (63)

(J'=1,2)] (64)
(=12

{a®= ¥} (a)}A|(@)=aG(a)C/(a)
{azf 'yjz(a)}Bj(a)= ¥i(@)Gi(a)Cj(a)

in which
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. azj(a)exp— yj(a)ytexgd —{a

\
2= y¥(a)}%Z]cog ax)da

(58)

12xoH3 1
mph {a®=yj(a)}?

® 2
w\2(1 1| 112h, {(w_o) _1}
)(S+R)+§w2h{
12h, a?

_ S
7°h {a®~ Y (a’)}l/2

,4(“’21 1y, 1 w)z w)®
Co(a)=a"— w_o) (§+§)a +R_S(w_o [(w_o) _1]

bo(a)_ _2 2+

(65)
L, w\?1 12h, oh
Gi(a)=a"—yj(a)— g ﬁ_ﬁYj(a){l+ ¥j(a)}
(j=12 (66)
and wy= mc,/2h is the cutoff frequency.
The boundary conditionesz) and (53) render
2 ((@)Cj(a)=0 (67)
2
]21 {Pi(a)— y(@)}Cj(e) = (68)
in which
Rj(a)=_Nj(a)Vj(a)_a’Pj(a) (1=1,2. (69)
The unknownC(«) is related toC;(a)(j=1,2) as follows:
2
c:(a):zl Pi(a)Cj(a). (70)
=

Application of the boundary conditior{§4) gives rise to a pair of
dual integral equations:

* o Miy
faf(a)C(a)COS{aX)da=EF (0=x<a)
0
- (71)
fC(a)COS(aX)daZO (asx<®)
0
in which M;, andf(a) are known as
Miy:_ikD\Pyo (72)
f(a)—L{ (@)= V() 2 (73)
aU(a) [ 1 27 Sy(a)
(@)
U(a)=Py(a)- Pz(a>s;) (74)
Sj(a@)=Pj(a)—vj(e) (=12 (75)
Vi(a)=—-Pj(a)yj(a)+vaNj(a) (j=1,2. (76)
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Table 1 Material properties of aluminum

Densityp  Electrical Conductivityc ~ Shear Modulusu
Material (kg/m®) (mho/m (N/m?)
Aluminum 2700 3.54x 10 2.37x101°
1
_________Llc_=£).0
=
8 0.5r 0.001
s 0.002
= 0.003
= V=03
ah=5
L 1
0 0.02 0.04
W/ Wy
Fig. 2 Dynamic bending moment intensity factor
|K I Mo(mra)¥?| versus /e, (al h=5)
1
v=0.3
a/h=10
g TS h=0.0
< 2
B 05} =3
g 0.001
o 0.002
0.003
0 0.02 0.04
w/wy
Fig. 3 Dynamic bending moment intensity factor
|K I Mo(mra)¥?| versus e/ wq (al h=10)
0.7
=
¥
g
=
0.4 0.001 0.002 0.003
he
Fig. 4 Dynamic bending moment intensity factor

|K I Mo(ma)¥?| versus h, (alh=5)

The second of Eqg71) would be satisfied ifC(«) is taken as

Cla)=— Miy 2 f V2D, (£)dp(aaé)dé 77)

2 DF 2

F=Ilim f(a).

a—®©

(78)

Inserting Eq.(77) into the first of Egs.(71) yields a Fredholm
integral equation of the second kind:

1
Dy(&)+ fo Ki(&m®i(m)dn=¢£" (79)
where the kerneK, (&, ») is given by
|11
Kl(é,n)=(€7;)1’2fo a| £ f(ala)=1|Jo(aé)Io(an)da.
(80)

The moment intensity factor is defined by
Ki= lim {27(x—a)}¥?M,,(x,01) =ikDW o a) 2D, (1)

+

X—a
=MoMy(ma)aDb, (1) (81)
in which
MO:ile\I’yO
M,=k/k
2 1 82

ot w\?(1 1 [(1 1\ 4 [w)?]"
1721w 13TRTI\STR TRslw

Keep in mind that the factor exp{wt) has been suppressed.

Discussion of Results

The elastodynamic plate solutigfil4]) is recovered when the
magnetic field tends to zero. In the limit as— 0, the correspond-
ing static solution ok, =M,(ma)'? is obtained. The considered
conductor is aluminum. The material properties are given in Table
1. Computed are the numerical valuesd®i(1) in Eq. (79) for
v=0.3. The ratioM ,=k/k, in Eqg. (81) is known fromw in Eq.

(48) which can be further reduced to

k\4 k\3 k\2
a; k_l) +b, k_l +C, k_l +d, +e]_70 (83)
in which
27 h* 8 1
=g 1, " 31,
8 1
by §(1—v)k1h°h3
w? 8 1 @ 4 \h*lw)?
g B S rahgle) | e
2 4 2
d,= 3—kgh h— e ——h h3( 2)
772 w 2 w 4
e~ gl o] +aanle)

The normalized magnetic field bf.=0.0, 0.001, 0.002, and 0.003

corresponds, respectively, to magnetic inducti®y=xyH,
=0.0, 5.46, 7.73, and 9.46T.
A plot of the normalized moment intensity factor

|K,/Mq(ma)*? is given in Fig. 2 for the ratim/h=5 and four
different values oh.. The dashed curve obtained for the case of
h.,=0.0 coincides with the purely elastic case. The quantity
|K, /Mq(ma)*? for h,=0.0 decays as the frequency increases. As
the three curves fdn,# 0.0 possess lower amplitude than that for
h.=0.0, the magnetic field is seen to decrease the local moment
with increasingh.. Such an effect dies out at high frequency.
Figure 3 shows the result for the ratdh=10. The same gross

whereJy() being the first kind Bessel function of order zero, anéffect is observed. The same data & /Mq(wa)*? is plotted
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0.7 Appendix A
v =0.3 Here, the effect of the magnetic field bf,y=Hy, Hox=Hoq,
ah=10 =0 on the flexural waves is studied. The frequency equation for a
T conducting Mindlin plate with finite electric conductivity is ob-
= tained as
)
z 4 kh3w)5+'4kh31+kh(w4
o 3 on(kh) ke, 5 (kh)*( ) ke,
(8 Lot 2o ks T ok
31—v 977 an(kh) 30'h( )
045 0.001 0.002 0.003 A 5
e x 2 @
+ 3(kh) (1+kh)hcoh](kC2
Fig. 5 Dynamic bending moment intensity factor 8 1 5 5
|K I Mo(ma)¥?| versus h, (alh=10) S 4 .2 3, m 4 (i
317,797 (kh) 3 (khy (1 kh)\kcz
" kh)2(1 koot 20— g (Kt
§ ()(+ Yheoy gliv(rh()
04 ™ (1+khh @) i2™ L k=0
i +5( )cUhk—Czlgl()( )=
3 (A1)
0.2r where
op=Chokg. (A2)
Figure 6 shows the variation of the phase veloeit)kc, with

the wave numberkh for h.=0.003B,=9.46T), »=0.3, oy
=10,1000. The dashed curve refers to the cash.ef0.0. The
) ) effect of the magnetic field om/kc, is observed at low wave
Fig. 6 Phase velocity w/kc, versus wave number kh number. The curve obtained for the case of a perfect conductivity,
i.e., o—», coincides with the case af;,=1000. The results
show validity of the assumption that electrical conductivity is zero
0.6 at cryogenic temperature.

Perfect Conductivity

Appendix B

The dependency of the flexural wave kimfor three magnetic
er|dS 0fH0X=H0, Hoy=H02=0 (Case ], HO Ho, HOX HOZ
=0 (Case 1), Ho,=Hg, Hox=Hq,=0 (Case 1) is studied. A
perfect conductivity is assumed for the Mindlin plate.

(@) Case | (Hox=H;,, Hoy=H,=0). From Egs.(2), (19),

w/key

| Case I I (23), and(39), we obtain the magnetic field intensity components
as
o oz 04 os i o 1
kh hxszO(uy,y+ uz,z)zizHOE‘Py,y
Fig. 7 Phase velocity /kc, versus wave number kh (perfect h = Houi =0 (B1)
conductivity ) Iy Iy
hZ: HOUZ,X: 0
From Eqgs.(3) and(B1), we also have
Jix: hiz,yf hiy,z:0
againsth, in Figs. 4 and 5. Note thdK, /M y(a)*? approaches _H = 1 ¥,
unity asw/wy—0 ath,=0.0 and tends to decrease with increas- Tz Mzx ™ H°1 . (B2)
ing he. S . 1
In conclusion, the amplification of the moment intensity factor jL= h'y x* h' ZH°1 \If'y vy

of a through crack in a Mindlin plate subjected to a steady-state

magnetic field normal to the crack and an incident flexural wave e Lorentz body force components per unit volume are given by

evaluated in this work. A perfectly conducting material is as- (ixB )i -0

sumed for the plate. Significant decrease in the local moment 17 Bo)x

intensity factor occurs at wave frequeney wy<0.02 and the

magnetic field effect dies out gradually as the frequency is in-

creased. All results are based on linear magnetoelasticity assum-

ing a coupling between the induced current and deformation. (jXBo)h=— KOHojiy: KkoHZ—— !
1-p Y

. ) 1
. _ S 2
(]XBO)Iy_KOHOIIZ_ZKOHolf \I’Iy yy (B3)
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From Egs.(21), (43), and(B1), the stress boundary conditions on A;=A=*ikHohW o expkh). (B12)
the plate surfaces are

) ) ) From boundary conditioi21), we have
o= KkoHo(hy—h)

1 (TiZZ:O
‘ o S B13
== koMo — A4 . (B4) ohy=koHo(hE'—hl) = — koH3(kh+1)W}, (B13)
Uzy=0 (z=+h) From Eqs.(?l) and(33), we obtain
! =
Making use of Egs(31) and(33) renders the momentnxx, yy Mho=0
i 2
and the loady’ —— 2oH3KNPW) + < gHENW b (B14)
My =0 .
2 q'=0
my, == koHGT—— h*Wy yy ¢ - (BS)  substituting Eqs(39) and (B14) into Egs.(35) and (36) yields
40 4 fw\* (81 1 i 1
3 (k| — 375t g™ |(k?+4kh| 1+ 2kh|h
Substituting Eqs(39) and (B5) into Eqgs.(35) and(36) yields C2
2 2 2 2
_ _IZ -2 = 2, 7 + =] +— (kh)+—kh 1+ zkh|h,=0
(kh)(kcz) [(31—v+9”+ 1_th)(kh)+ 3 3 [\ ke, 9 1- 3
w )2+{2W2 1 N 2 ) ](kh)z 0 s (B15)
- - T - T c =0, 2 2 2
ke, 9 1-v 8 R [W —2( © ) ]szo. (B16)
2 2 2 6 6 ke,
LT T w
5 Yy=—15 2 ke, kW 0. (B7) Figure 7 shows the variation of the phase velosifkc, with

the wave numbekh for h,=0.003B,=9.46 T) andv=0.3. The

(b) Case Il (Hoy=Hg, Hoxy=H,=0). From Eq.(48), we curves obtained for theg, zdlrectlon magnetic fieldéCases I, )
also have the frequency equation for Case(Hlpy=H, Hox almost coincide with the purely elastic case. The effect of the
=H0z=0) as y-direction magnetic fieldCase 1) on flexural waves is more
pronounced than those a&f zdirection magnetic field¢Case |,

(kh) ( )4 (8 t e )(kh)3+—(kh) ).
ok 31—, 9
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On the General Solutions for
¢-%52 1 Annular Problems With a Point
L4 Tn § Heat Source

Department of Mechanical Engineering, A general analytical solution for the annular problem with a point heat source is provided
National Taiwan University of Science in this paper. Based upon the method of analytical continuation and the technique of
and TEChﬂf.Jlogyy Fourier series expansions, the series solutions of the temperature and stress functions are
43, Keelung Road, Section 4, expressed in complex explicit form. Single-valuedness of complex functions in the doubly
Taipei, Taiwan 106, R.0.C. connected region has been examined for both the stress-free and displacement-free

boundary conditions. The dilatation stress in the annulus due to the application of a point
heat source is discussed and shown in graphic fg®0021-89360)02803-9

1 Introduction tion of the thermal field the strength of a point heat source must be
roperly chosen such that the condition of energy balance be-
yeen a point heat source and the given prescribed temperature
Rtributions along the inner and outer boundaries is satisfied.

The boundary value problems for an annular region have
ceived considerable attention from many researchers since th8

problems have applications to many different engineering sirug; ving the solution of the temperature field, the thermal stresses

tures such as pressure vessels, test specimens, and roIIers.i Re annular region is determined by the method based on ana-

?‘gllu;fg efg'getrZZIStrri?sisrelg waagrﬁf’:tuirnecl\llj %ste!nu%ieggggoggnlg ic continuation theorem in conjunction with Laurent series ex-
P P sions. The undetermined coefficients appearing in the series

?hy L;me_[l]. By determining tht,e\AAlrysfstresds functlonlan? ltj.s'n olution are solved using the Fourier series expansions. Both the
€ Fourier series expansions, icHe] ound a general Solulion gy ogq free and displacement-free conditions are considered either
and gave a conclusion that the stresses in the annulus are mde% fhe inner boundary or on the outer boundary. In the present
dent of the elastic constants provided that the resultant forces Ogﬂ'élysis we exclude the case of the displacemeht-free condition
the inner and outer boundaries are zero. Bowie and Fr8lse o,ngjgered on the inner and outer boundaries of the annulus.
solved the annular problem containing a radial crack by using they v aver. the method is easily extended to solve the

tion was solved by Delale and Erdogié]. By treating the dislo- g4ytjon is obtained. The solution derived in the present problem
cation solution as the Green’s function, the integral equation for g, 4 point heat source can be used as a Green’s function which

crack on the annulus was established and the crack-opening digss us to derive the solution for the problem with distributed
placement and stress intensity factors were obtaii¥8il Worden 5o rces that is frequently encountered in practical applications.
and Keer[5] derived the Green’s function for a point load or a

dislocation in an annular region using analytic continuation across
the boundaries of the annulus. In their solution, the potentials
describing an equilibrated point load and a dislocation were fouzd Formulation of the Annular Problem
in the form of the Plemelj formulas plus an infinite series. The ) . . ) .
convergence of the infinite series is dependent on the wall ratio?-1 Basic Equations. For two-dimensional thermoelastic
and their method is only appropriate for analyzing thick-walleRroblems the resultant force and displacements can be expressed
annuli. For problems considering thin-walled members, Cherfgterms of two stress potentiai&(z),4(z) and a single tempera-
and Finnie[6] obtained the stress intensity factors for radialure potentialg’(z) as([8])
cracks in circular cylinders and other simply closed cylindrical . — —
bodies. All the aforementioned studies conpsider only for isother- —Y+iX=4(2)+2¢"(2)+¥(2) @
mal cases. Very few solutions of the thermal stresses for the an- -
nular problem are found in the literature. The exact analytical 2,u(u+iv)::<¢(z)—z¢’(z)—z//(z)+2,u,8f g’'(z2)dz (2)
solution is only found for the problem that the given temperature
distributions are prescribed on the boundarisese[7]). where—Y+iX is the resultant force over an arc of the boundary

One of the most difficult parts in solving the annular problemrmeasured from some fixed pointandv are the displacements in
with doubly connected regions is that the single-valued conditiaghe x-y plane,x=3—4v, 8=(1+v)a for plane strain an&=3—1v/
of the displacements and the stresses must be satisfied. The poby, =« for plane stress witlw being thermal expansion coef-
lem will become more complicated if singularities or point hedficient andv the Poisson’s ratioy is the shear modulug,is the
sources reside in the annulus. In this work we first determine themplex coordinatez=x+iy, and the bars denote complex con-
temperature distributions of the annular problem subject to a pojatation. The components of stress in polar coordinate system are
heat source and then solve for the thermal stresses. In the deriva- -

ot og=2[¢'(2)+¢'(2)] 3

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME QURNAL OF APPLIED i =¢'(2)+ ' (2)—
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, July Trr Tro
28, 1998; final revision, Jan. 29, 1999. Associate Technical Editor: J. R. Barber.

Discussion on the paper should be addressed to the Technical Editor, Profess ; i _ iotribii
Lewis T. Wheeler, Department of Mechanical Engineering, University of Houston,ozz Determination of Steady State Temperature Distribu

Houston, TX 77204-4792, and will be accepted until four months after final publnon's- COUSidef a C.ircmar annUIU.S with inner radh?’and outer
cation of the paper itself in the ASMEDIRNAL OF APPLIED MECHANICS. radiusb which is subjected to a point heat source with the strength

z¢"(2) + ;«/f’(Z)

: (4)
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0o located at the point=z,=rye'% (see Fig. 1. For steady-state the inner and outer boundaries of the annulus is ensured Within the
heat conduction problem the temperature potemgfigk) can be CONtext of steady state heat conduction theg8y). Mathemati-
written as cally, the difference betweef; and A, in (10), which accounts
. for the net heat flow from outside to inside the annulus, must be
, N equal to the integral term which accounts for the heat generation
9'(2)=QoIn(z—20) + 2 AnZ (5)  due to the presence of a point heat source. For the problem with
e the absence of a point heat source, the temperature potent&l in
where Qo= —qo/27k with k being heat conductivity and,, are is replaced by
the unknown coefficients which will be determined as the thermal
boundary condition is imposed. In the present analysis, the tem- ,
perature)s/ at the inner aFr)ld outer bounpdaries of th}é annulus are g'(2)=A*In Z+n;x AnZ" (11)
denoted byT () andT,(6), respectively, i.e.,

%

where the unknown coefficients and\, can be obtained from

T= %[g’(t)"’g,(t)]:Tl( 0) (8)—(10) by puttingQ0=)\* andr():O as
Aj—A AgInb—A{Ina
c ; M= Int(;—lnoa’ 0~ OIn b—InOa (12)
=D\ (Ancosmo+B,,sinmd) on t=ae’ (6)
m=0 and
PR et (b"A!—a"A,)—i(b"B,—a"B,)
T=3519"(H+g"()]=Ta(6) Ay ann—aZf' n T (n#0)  (13)
_— , - b "A/—a "A,)—i(b"B,—a "B
=mZ:0 (A, cosm@+B/ sinmg) on t=he"’. (7) )\,n=( n b’nz)”—a(l’zn n n (n#0).
On substituting5) into (6) and(7) and applying the techniques of (14)
Fourier series we find Upon integration of(5) and (11), the temperature functions be-
Q (27 come
0
XO:AW‘Z;J;'“az*@‘za“°°“9‘9@]d9 ®) 9(2)=Qul(z-20)(IN(z—2)~1)]+\ 1 INz+g*(2) (15)
1 or and
MZE&GF??WJ;{ZW”E‘“Tﬁ 9 =Nznz-1)+\_iInz+g*(2),  (16)
s 2 respectively, where
— Qo[ b" In(b*+rg—2brycog 6 6y)) .
) A
—a"In(a?+r3—2arycog 6— ) 1le""’do (n+0) ot ()= D, gzt (17)
©9) ne-1
and for consistency we require is analytic and single-valued everywhere in the annulus.
2m
Aj=Ao— 4?_:7) f [In(a®+r3—2ar, cog 6— 6))
0 3 Thermal Stresses in the Annulus
—In(b?+rj—2br, cog 6 6;))1d6. (10) For the annular problem with a point heat source the stress
It should be emphasized that the strength of a point heat souFHQCt'ons can be written a$10])
must be chosen to satisfit0) such that the condition of energy d(2)=AzInz+BInz+ ¢*(2) (18)
balance between a point source and the temperatures prescribed at
p(2)=Clnz+y¢*(2) (29)

whereA is real constant anB, C are complex constants which are
related by the following equation$10]):

_ 2
‘ (k+1)Az+ kB+C= Z:i'g[g(z)]c (20)
_ [-Y+iX]
B—C—T (21)

where[f(z)].=f(r,0+2m)—f(r,6) which denotes the jump of
the functionf(z) when enclosing the contowrwithin the annu-
lus.

Note that the singularity of the termln z appearing in(18)
b results from the logarithmic singularity of the temperature func-
tion induced by a point heat source. The two holomorphic func-
tions ¢*(2),¢*(2) in (18) and (19), respectively, can be ex-
pressed in a series form as

0

¢ (2= 2 L2 yr2)= X M2 (22)

Fig. 1 Problem configuration for the annulus n=—w
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where the constant coefficierts andM , may be determined as (1) Stress-Free Boundary Conditiapy;= y,=1,6,= §,=0)
the stress or displacement boundary condition is imposed. The
boundary condition on the inner and outer boundaries of the an-

nulus can be expressed, respectively, as _ 21BRo
[Fi()]e, =[f2(D)]c,+ 1o e

y16(t)+te () +(t)+8,9()=Fy(t) on t=a€’ (23)

Y20 +(E 0+ 0+ 8,00 =To() on t=bd” (24) + 2B 1, 2O

2upPN_y
[t In t]C1+ ﬁ[ln t]cl

t

+ K 1+k |t

where y,=y,=1, §;=8,=0, f,(t)=1,(t)=R(t) for the stress c
boundary value problem witR(t) being a known resultant force
on the inner and outer boundaries of the annulus while vy, I Zﬂﬁ)‘*l[mt—] on t=ad? (31)
=—k, 61=08,=—2upB, f1(t)=1,(t)=—2uBD(t) for the dis- 1+« G
placement boundary value problem wih(t) being a single-
valued displacement function. Since the case of the displacement- .
free condition on both the inner and outer boundaries of t ere_fl(_t) represents the fes“'Fa“t force on the inner bOL_mdary
annulus is excluded from our analysis, the resultant force over theWhich is a single-valued function ard,(t)lc, =0. Sincec, is
entire system becomes zero and the unknown coefficieni; the internal boundary of the doubly connected region and is
and C appearing in(18) and(19) can be obtained by substitutingdescribed in a clockwise mannef|n t]clz—zqri,[ln t]clzzqri

(15) and(16) into (20) and(21) as and knowing tha[t/t_]clzo, soF4(t) is a single-valued function

1

A —2uBQo B—Co —2uB(A_1—QoZo) one,
14k T 1+« '
218Qo
for |ZO|<Z<b (25) [Fz(t)]cz:[fz(t)]cz+ 1+« [t |nt]02
—2uPBRy — —2upN_y
A= Do 0BGy fora<z=inl L20B0-amQuz) | 2uBQ0
(26) 1+k 2 1+ K
where Qo= —qo/27k, Ry=0 for the problem with a point heat 2 r_ - ¢
source and)o=Ry=\*, z,=0 for the problem with the absence + HBO -1~ QoZo) | T
of a point heat source. Substitution (5), (16), (18), and(19) 1+« T
into (23) and(24) results in 2
y1¢* (1) +td* ' (1) +¢* () + 8,9* () =Fy(t) on t=ae”’ +M[|nt_]c2 on t=be? (32)

(27) 1+«

Yod* (D) +1* (D) +y* () +8,9% () =F,(t) on t=be’ . . : :
(28) wheref,(t) is a known function and single-valued @n. Since
C, is the outer boundary of the doubly connected region which is

where described in counterclockwise senge t].,=2i,[In t], = —2i
28R, 2B\ 4 and knowing thaft/t]. =0, so we havgF,(t)].,=0.
+ K 1+k (2) Displacement-Free Boundary Conditigny;=y,= —«,
I 01= 8= —2up)
2uBR — 2uBN_1t 2uBN_; —
L 2P gy 2P L 2P g

1 t 1 mim
e +K 1 + Kk [Fl(t)]cl:[fl(t)]cl_K /"“:8 0

2 _
[tint], + 24PA1 004 )
K 1 1+« !
—61Qo((t—2p)In(t—2)) — S1h _1 Int+ 5;Qp(t—2p)

29) + 28R4, JFZ’LB—)‘_’l i_}
and 1+« Pool4k |t .,
Fa(t)=fa(t)+ 7, Zf%fot Int+ ZMB(K{:;QOZO) Int N %[lnt_]cﬁZM,BQo[(t—zo)ln(t—zo)]cl
o P
*‘fofo(“'“‘_“wz— ~2uBQul (1= 20)Je, + 2uph a[Int]e,  on t=ae”
2P0 020 11T 5,Qu( (- zo)In(t~20) =

wheref,(t) represents the given displacement function which is
— 8N _1Int+6,Qq(t—2p). (30) single-valued onc,. As c, is described in a clockwise sense
and knowing that, is located outside the contoa; andR,=0
?-_1 Sringllje-VaéuedneTS of bclttnfrﬁnglexd(l;%r)]ctions.Before for a point heat source considered, we obtgin(t—zy)]. =0,
solving the boundary value proble an , we must ex- o T oo _
amine whetheF (t) andF,(t) are single-valued functions on the[In t]°1_ 2_7”’ and(in t]cl—Zm, S0 w_e haVEEFl(t)]Cl_O' As thg
inner boundary or on the outer boundary. In the following discu®roblem with the absence of a point heat source, we olitgin
sions, ¢, pertains to the inner boundary whitg pertains to the =Qo. Zo=0 and knowing thaft In t]o =—2mit, [t In t], =2mit,

outer boundary. so we also hav@Fl(t)]clzo.
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2pBQo 2uB(N_1—QoZp) 2uBQo 2uB(N_1—QoZo) | t
Fo(t =[f,(t - tint Int t(1+Int) —_— | =
[Fa()]le,=[f2(0)]e,~ k| == [tIntle,+ Do Unte, |+ =K e, T =
)
2pB(N—1—QoZo) i
+T[lnt]c +2B(Qol (t—20)IN(t—2)J¢,~ Qo[ (t—2p)Ic, ¥ A -4[Int]c,) on t=be’ (34)
K
I
wheref,(t) is a known function and is a single-valued function b2 2 b2
onc,. As c, is described in a counterclockwise sense and know- *(z)=— y2¢*( ) - —¢* ' (2)— 5,9 (:) for ze S
ing that z, is located inside the contour,, we obtain[In(t z z 38
—zo)]c =2 [Int]C =2 [In t]C =—2mi, so we have[F, (t)]C (38)
=0. For the problem with the absence of a point heat source WAd hencep* (z) must satisfy the compatibility identity
obtain z,=0 and knowing thaft Int:|C =2mit, [tIn t]C =—2it;
so we also havgF,(t)],,=0. L% (% bpP-at 2
On comparing(31)—(34) it is clear that both the stress and L R EU ¢
displacement boundary value problems may be solved by exam- = R
ining the Egs.(27) and(28) for which ¢*(z), *(z) are single- L T
valued holomorphic functions and the single-valued functions 020 z 019 z =0 for zeS. (39)

F,(t) andF,(t) are interpreted according t81)—(34).
o ) On substituting35) and(36) into the boundary condition@7)
3.2 Compatibility Identity. Consider the annular regicam and (28) we obtain the following Hilbert problems:
<|z]<b by Sand the annula®b~1<|z|]<a, b<|z|]<b?a ! by
S~ andS*, respectively(see Fig. 2 If we use the continuation

across each boundaryi* (z) can be extended frors into the ~ #* ()= ¢* ( )=_[F1(t a1(g*()—g* ()] on t=ae’

annuliS™,S" by the definitions([11]) (40)
1 a? a2 B

¢ <Z>“71[Z‘f’ F AR A (Z)] forzes  gr—¢* )Z_[Fz(t) 5a(g* () —g* (1))] on t=be"

(41)

+ 529*(2)] for ze S*. where ¢*+(Z) and ¢* (2) (or g*+(z) and g*(z)) denote the
(36) limits on |z|=b and|z|=a of ¢*(2) (or g*(2)) in ST andS~,
respectively. Sinceb* (z) andg* (z) are holomorphic and single-
¢* (2) is thus holomorphic in the three regio8s, S S*. Notice valued inS™, S andS*, they may be represented by the Laurent
that g* (2) is also holomorphic and single-valued 81 andS*  series
because there is no singularity or point heat source located in the

1 b? b2
¢*(Z)——— 2¢*( ) + ( >

regionS™ andS*. If we invert these continuations we find ~ B
= > L,2" (zeS)
a’\ a®> _, a® n==w
PH(D=—nd*| =| - S ¢ (- 89" =| for zeS B
(37) ¢*(2)={ = >, L,2" (z€9 (42)
n=-—o
= > Lz" (zeS")
[ o=
f 0 —
A
:n;_x n+annJr1 (zeS7)
n#—1
_ é An n+1
9" (2={ = & ny1? (ze9) (43)
n#—1
=t
=2 Grr?t @esh.
\ n#—1
Hence the boundary conditiori40) and(41) take the form
1 2w . .
n -] V= — i0\A—ing
a(L,—L,) 277 fo F.(ae”e ""do
&y a"(Np—1—Apoq)
. o -2 TVY (n£0)  (44)
Fig. 2 Analytic regions of the annulus Y1 n
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1 2m _ _ 2uB Aj—Ag b a%r?-b% b
b"(L,—LF =—J F,(be?%)e "idg il VA I Pl Sl
(Ln=Ln) 2wy, Jo 2(be’”) T 1fkinb-Ina| r r’(b>—a?) Na 51)
8, b"(Np_1—Ni_y) _2uB Ag=Ao [ ngi a%(r2+b?) nE
oy n (n#0) (45) 76 1+ kInb—Ina r rib’-ad)  a
and substituting in the compatibility identit9) we obtain which are in accordance with the results given by Timoshenko
and Goodier{7]. Next we consider the case that the inner and
yb?'L ) — @2, +(b2—a?)(2—n)L, , outer boundaries of the annulus are subjected to angled tempera-
N B ture distributions, i.e.T;=A; cosé on |z|=a and T,=A] cosé
+52b2“>\”_1—51a2” A1 0 (n#0). (46) on |z|=b and from(8)—(10) and (29)—(30) we have
: . B _bAI-aA, _a’® (AL A
On eliminating the coefficients;” andL from (44)—(46), the =0 Xo=0, M= M mpe|l T 7
constantd_ , and\,_; satisfy the system of equations
- B —2uPBN\* 3
(72b*"= 7122 L+ (b2 —a2)(2-n)L, A1 =0
(52)
+(8,b2— 5,82") Ao-1 BCL J2HPA-1_ —2uB a’® (Ap A
n 1+« 1+x a’-b?lb a
1 (27 ) ) )
- - 2uBN t
=55 | (WFo(be’)—a'Fy(ag’e do (n0). FA(D=F,(t) = /IBTKl '”Ht_*'”j'

(47)  On substituting the above equations if&8) and (A5) we obtain

Similar to the previous approach, the coefficidvit, associated B
with the stress functiony* (z) can be found from37) or (38) Lzzm, L,=0 (n#2)

which satisfy the system of equations (53)
- - — 2 —a’b?B
(72b 2(n+l)_71a 2(n+l))|-—n+(b 2—3. 2)Mn ,2=W, Mn:O (n#—Z)
—(8,b7 200D _ 5 5= 2(n+1)) Ay and the components of stress are
1 2 - on=pr{l——=/|—=z—1|C0S
:2_j [bf(n+2)|:2(be|9) r r
mJo a?b? a’+b?
— =pr| —+ - 4
—a "2F (ad)]e "o (n#0).  (48) Tor=PI\ T T 2 3)°°S‘9 54)

Once we obtain the coefficients, andM,, (see the Appendix 2\ [ b? )
the stress functiong* (z) and ¢* (z) are completely solved and TreZPT( 1- Fz) (rz* 1/sing
the components of stress can be determined by substit(tB)g
and(19) into (3) and(4). Since no analytical solutions for annularwhere

problem with a point heat source are available in the literature, E 2p2 Al
. . . o a Al 1

only special cases with the absence of a point heat source are p= _ﬁ(__ _)

considered here for demonstrating the use of the present approach. 2(1-v)b"-a"la b

We first consider the case that the inner and outer boundariesy@fich are exactly the same as those given by Timoshenko and
the annulus are kept at constant temperature, T£<A, on [z|  Goodier[7] for a plane-strain condition.

=a andT,=A} on|z|=b and from(12)—(14) and(29)—(30) we

have 4 Results and Discussion
A=A, AgInb—AlIna For steady-s’Fate heat conduction problems the straqtgﬁan-
N=———r— ANg=—————, M=0, N_;=0 not be arbitrarily chosen once the temperatiireat the inner
Inb—Ina Inb—Ina boundary and the temperatufe at the outer boundary are as-
_ % _ ;L _ sumed as known values. The effect of changing the rB4ibT
A= 21 B = 21B(Ao~Ao) B=C= %:O and the wall thickness/a on the dimensionless strengipa/ Tk
1+«k (1+x)(Inb—Ina)’ 1+« (with the casery=(a+b)/2, #,=0deg can be evaluated from

(49) (100 and shown graphically in Fig. 3. For convenience of the
2up calculation in(10), we assume the temperatureandT, are kept
Fi(t)=F,(t)= i [tint+t+tint]. at constant, i.e Ay=T,, Aj=T, from (6) and (7). OnceA, and
1+« A} are given, the dimensionless strengfga/Tok can be deter-
On Substituting the above equations |m) and (AS) we obtain mined from(lO) for different wall thicknesd/a. The result indi-
cates that the strength of a point heat source becomes a positive
1[2A(a%Ina—b?Inb) (or negative value as the temperature at the outer boundary is

*

L1=§ (b2—a?) Al La=0 (n#1) lower (or highe) than that at the inner boundary. It is then under-
(50)  stood that the conditiofi,< T, (or T,>T;) will accompany with
2A(a?Ina—b?Inb) the presence of a heat sour@e sink such that the energy bal-
ST gy M,=0 (n#—1) ance within the annular system is preserved. Furthermore, the
strengthqg changes dramatically with the ratib, /T, for the
and the components of stress become annulus with a relatively thin wall. The dilatation stress,
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Fig. 5 Dilatation stress in the annulus for the displacement-
free and stress-free boundary conditions at the inner and outer
boundaries, respectively

Fig. 3 Relationship between the strength of a point heat
source and the temperatures at the boundaries of the annulus

+0yy, Which is mainly responsible for the result of material failfree condition at the outer boundary, the maximum dilatation
ure by fracture, is found for three different cases of boundagress is found to take place at the inner boundaryuter bound-
value problems as displayed in Figs. 4-6. The conditibpsT;  ary) as displayed in Fig. %or Fig. 6.

=3,b/la=2,ry/a=1.5 andf,=0 deg are considered for all three

cases and the results shown in Figs. 4—6 are based on the S%ie$oncluding Remarks

solutions up to the first 20 terms in EQ2) which are checked to . . .

preserve a good accuracy. It is shown that the maximum dilatation" this work we have derived the solutions of the temperature

stress always occurs &= 180 deg, which is farthest away from and thermal stresses for an annular region subject to a point heat
the position where a heat sink resides, for all three cases. For fiirce. By properly expressing the discrete solutions in terms of

traction-free boundary condition at both inner and outer boun xplicit functions, the obtained results can be treated as Green’s

aries of the annulus, the maximum dilatation stress occurs at th@ctions which enable us to formulate an integral equation for a
inner boundary with the lower temperature as shown in Fig. 4. F g,ackk on the annulus.f Sln(f:e the serle”s so!u';lgnshderlved in this
the displacement-free conditidor the traction-free conditiorat WO'K converge very fast for any wall ratia/b, the present
the inner boundary and traction-free conditi@r displacement- Method is appropriate for analyzing both thin-walled and thick-
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Fig. 6 Dilatation stress in the annulus for the stress-free and

Fig. 4 Dilatation stress in the annulus for the stress-free
boundary condition at the inner and outer boundaries
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walled annuli. In the future study, we will consider the transient On eliminating the coefficients, _, the coefficientd |, satisfy
behavior of the annular problem in which the consistency condi-

tion (10) will not be used. -
Lo={ (72022 "= y,2*2"")Cot (n-2)(b*~a)C,
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Appendix X (2?2 M= 5,222 M) +n(n—2)(b2-a2)%} (n+#0).
Equation(47) can be replaced by (A3)

2n_ 2n 2_ 222\ .
(7207 = ya@)Lo# (b™=a%) (2 =Nl Similarly, Eq.(48) can be replaced by

Np—

2 2 n-1_ N

+(8,b°"— 5,2") ; =C, (A1) (y,b= 271 — ) g =20F Y[~ 4 (=2 a=2) M

. _ (2 ga 2y M0 g )
(7202 M~ 5222 M), +(b?~a?)nL, n
. (Ad)

22-n)_ 5 42(2-n)y Mon _

+(32b 618 )3~ Con "2 on substituting(A3) into (A4) we find

|
1

My (7127 2D — b 2N | (b2 (2 — 222 C — (n+2) (b7~ @) Cpiz

(b 7=a?)

N
+(b2—a2) (5,022 — 5,822\ 4 (y,h2(MH2 o g2(0+2)) (5 p=2n_ 5 420 %}/ [(y,b~2"= y,a~2")

A_
x(y2b2<”+2>—y1a2<”+2>)+n(n+2)(b2—a2)2]—(51a2<“+l>—52b2<”+1>)%+Dn} (n+0) (A5)
where the constants, andD,, appearing in(Al)—(A5) are
:i o n iy __ 4n i6 —ing,
C, (b"Fy(be'’)—a"Fq(a€'’))e '""do

27 |,

1 27 . . o o
=5 . {(b"fy(be'?)—a"f,(ae'?))+(y;B+C+ SN _j)a" Ina—(y,B+C+ SA_1)b"Inb

+[(y;Alna+A(1+Ina))a"* 1= (y,AInb+A(L+Inb))b"* 1]el?+B(a"—b")e2’
+ o 82(be?—roe'®)[In(be?—rqe' %) —1]1b"— 5,(ae'’—re' 0)[In(ae ’—rqe'%) — 1]a"]

Fi0[{(y1A— A+ 8,q0)a™ 1= (7,A— A+ 8,q0)b" 11! P+ (y,B—C+ 53\ 1)@ (y,B+C+ SN _1)b"le "?dg  (A6)
1 2T - - )
Dnzﬁ JO (bf(nJrz)Fz(be'a)*af(“”)Fl(ae"’))e"”"da

27

1 - - _ _ _ _
=5 {(b=("*2f,(be?)—a~ ("2, (ae?)+ (y,B+C+ S _)a "2 Ina—(y,B+C+8HN_)b "2 Inb
0

+[(y;Alna+A(1+Ina))a ™Y —(y,AlInb+A(1+Inb))b~("*D]e-i?
+ o[ Sx(be™'—roe” 0)[In(be '—rqe %) — 1]~ ("2 — 5 (ae” '—r e %0)[In(ae '—r e ) —1]a" ("]
+B(a"—bMe 204 o[ {(y,A—A)b ("D — (g, A-A)a M Dle 104 (1,B—C+ S _)b ("2

—(y1B+C+ 8\ _p)a (" 2]re"infq g, (A7)

respectively. It is interesting to see that, for the stress boundagiyes the conclusion that the temperature distribution along the
value problem withy,=y,=1, 6;=6,=0, the constant, and boundary with the terms in co®2sin 24, and higher harmonic in

M, are only dependent on the coefficient§ and A_; or the temperature series do not produce any thermal stress in the
the coefficientsAq, Ay, Bg, By, A1, A;, By, andB;. This annulus.
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1 Introduction

In a random process the way in which the maxima and t
minima of a signal follow one another strongly depends on tr}
distribution of its energy over frequency. This characteristic d
terminates the statistic distribution of locektrema(peaks and
valley) andranges(difference between a peak and the consecuti
valley). These latter are of great interest in fatigue design,
fatigue damage is mainly related to the stress ranges, and

On the Characterization of
Dynamic Properties of Random
Processes by Spectral
Parameters

This paper deals with the general problem of directly relating the distribution of ranges of
wide band random processes to the power spectral density (PSD) by means of closed-
form expressions. Various attempts to relate the statistical distribution of ranges to the
PSD by means of the irregularity factor or similar parameters have been done by several
authors but, unfortunately, they have not been fully successful. In the present study,
introducing the so-called analytic processes, the reasons for which these parameters are
insufficient to an unambiguous determination of the range distribution and the fact that
parameters regarding the time-derivative processes are needed have been explained.
Furthermore, numerical simulations have shown that the range distributions depend on
the irregularity factor and bandwidth parameter of both the process and its derivative.
These observations are the basis for the determination of accurate relationships between
range distributions and PSD§S0021-8936)0)02903-2

introduced in order to obtain the statistical distribution of the
ranges. As a confirmation, proper numerical simulations have
hown that processes having equal both the spectral parameters of
fie process can have different range distributions, whereas pro-
Besses also having the spectral parameters of the time derivative
have equal range distributions.

Ve A practical example shows that, although a general closed-form
#Slationship between PSD and range distribution requires further
ré3earch work, this information can be used at present to obtain

oceanography where ranges correspond to the heights of wavegdgs| results in particular cases.

the ocean.

The statistic distributions of the extrema has been theoretically
addressed[1,2]) for both narrow-band processés which two o o
generic consecutive extrema are almost symmetrically placed wgh Preliminary Concepts and Definitions
respect to the mean leyeand wide-band processés which In this section some well-known concepts on analytic processes

consecutive peaks and valleys can occur without mean levgly spectral parameters are briefly outlined for clarity sake’s as
crossing and involve only therregularity factor @ ([(1-5]). Con-  \yell as to introduce appropriate symbologies.
cerning the statistic distribution of the ranges, only the case of

narrow-band processes has been theoretically solved. In this par2.1 Analytic Processes. Let Y(t) be a stationary zero mean

ticular case, in fact, the range distribution coincides with that ¢gandom process and 1&(t) be a complex random process such

the extreme one. In the case of wide-band processes, instead{n@f its real part isY(t) whereas its imaginary part is the Hilbert

attempts to relate the statistical distribution of ranges to the powansform ofY(t), that is

spectral densityPSD by means of the irregularity fact¢f6—12]) &

or similar spectral parameterg§13]) have not been fully XO=Y(O)+iY(t) @)

successful. wherei is the imaginary unit and the accehtmeans the Hilbert
In this paper introducing the so-called analytic processes, ttransform

time domain interpretation of the irregularity factor and the band- "

width parameter is first given. Then, considering the behavior of Y(t)= 1 f Y d @)

. . . . . = T.
analytic processes and their derivatives in the complex plane, the T | _t—7

reasons for which the irregularity factarand the bandwidth pa- . .
rameterg ([14]) are insufficient to give a full probabilistic descrip- 1€ random procesx(t) is called the analytic procesgLS)) and

tion of the ranges distribution in a random process are explainéyNS Some important characteristics. It is well known that the
Further considerations on the analytic processes show that an&gtocorrelation functioy(t) of X(t) is related to the autocorre-

gous parameters relative to the derivative of the process musti_%@onh_fur‘c“o“ ofY(t) andY(t) by means of the following rela-
ionship:

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF _ C
MECHANICAL ENGINEERS for publication in the ASME QURNAL OF APPLIED Rx(7)=Ry(7) +iRy(7) ®3)
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Fig. 1 Power spectral density  (PSD) functions Sy and Sy, (a) and corresponding sample functions  y,(?),
ya(t), Ax, and Ay, (b).

U(w) being the unit step functioU(w)=1Vw=0; U(w) zero crossing and the mean of extrema is calledittiegularity

=0V w<0). factor ay ([3]). The statistic distributions of peaks are well known
The analytic procesX(t) can be seen as a vector rotating in thé€[2]) and involve only theay parameter, while the conditional
complex plane defined as distribution function of consecutive peaks and valleys is not
. known. For these reasons the statistic distribution of the ranges
X(1)=Ax(t)exd iOx(1)] () can be theoretically obtained only in the case of narrow-band
where Ax(t) is the so-called amplitude an@y(t) is the phase processes as it coincides with that of the peaks.
angle respectively defined as Some spectral properties of stochastic processes can be high-

lighted by using thespectral moment§4,5,14)) defined as

Ax(D)= VY1) +Y2(1) (6a)

)
Y(tJ (60)

)\j=2JijSY(w)dw:wajSX(w)dw (j=12..). (0
(t) 0 0

It has been shown that the spectral moments can be defined in
2.2 Spectral Parameters. The statistic distribution of the time domain as the covariance of the analytic pro¥¢gsand
ranges is a feature of great practical significance, especiallyiis time derivatives by means of the following relationships
oceanography and in fatigue analysis. In a signal a range is df6,17):
fined as the difference in magnitude between a pgéatal maxi-

mum) and the consecutive vallgjocal minimum or, vice versa, ~_[d™X(t) d"X* (1)

between a valley and the consecutive pésde particular in Fig. 2n— dt" dt" (8a)
1(b)). As previously stated, in a random process, the way in which

maxima and minima of a signal follows one another depends on ) d"IX(t) d"X*(t)

the distribution of the energy over frequency, i.e., on bamd- iNan+1=E WT} (8b)

width. Narrow-band processes are characterized by the fact that
two generic consecutive peaks and valleys are almost symmetvhereE[ - | means stochastic average and the star means complex
cally placed with respect to the mean level, while in wide-bancbnjugate.

processes consecutive peaks and valleys can occur without meaBy means of the spectral moments several spectral parameters,
level crossingFig. 1(b)). The ratio between the mean number ofs the distancé)y of the centroid of the one-sided PSD from

0 \Vr\v/\v ‘\/jl\\l{\\}/\ /\\//\

0 10 20 30 40 50 “o 10 20 ] 30 40 50
tlsec)
(@ fleect o)

Fig. 2 Sample functions of the processes @y @, Ax /Ay, coincident with
Ax,lAx, (@ and Oy and Oy, (b)
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frequency origin, the radius of gyratign, of the PSD about the  Relationships similar to Eq15) can be written for higher order
frequency origin, and the radius of gyratipr of the PSD about derivatives ofX(t). As an example the second-order derivative of

its central frequency can be defindd4,18—20Q): the complex procesX(t) can be written as
0, % (%) X (1) =0x()X(1) = wx() wx()X(t) (17)
0 being
_ M (9b) Ay(t) X(t)
PN ox(t) = —— +iO3(t)= —. (18)
T x(t) X(t)
— 2 1
Px=NPx—8x= )\—0—()\—0) . (10)  Let X4(t) and X,(t) be two random processes such as the PSD

sz(w) is equal to the PS[SXl(w) but shifted in frequency of a

It is important to note that, considering Eq3), the spectral given quantityAQ (Fig. 1(a)). As an example let
moments of the analytic proce¥gt) coincide with those of its

real partY(t) and, consequently, the spectral parameterX(of 0.2239

coincide with those ofY(t). This means that the introduction of le(‘”): 02 Olsw=2.4 (19)
the imaginary part in analytic processes does not introduce any

complication in the numerical evaluation of the spectral param- 0.2239

eters whereas, as it will be shown in the following sections, it Sx,(®)= (0—A0)? 0.1+ AQsws<24+A0 (AQ=3);
allows a more complete interpretation of their physical and math- (20)

ematical meanings. ) ]

The bandwidth of a given process has been defined by means‘aft) is a broad-band process witly =0.36 andqy,=0.69,
two quantities, the previously introducédegularity factor ax  whereasX,(t) is a narrow-band process With)(2:0.97 andqx2
and thespectral parameter g introduced by Vanmarckgl4]. It —q 14,

has been shown thaty ([4]) is defined as The sample functiong;(t) andx,(t) of the X,(t) and X,(t)
N processes can be obtained by using the well-known generation
=2 formula ([19,20)
[£5% 0S axg 1. (11) ’
N

N
It approaches one for narrow-band processes and decreases, apxj(t):yj(t)+i§/j(t)=2 \/2Sx (w ) Aw [cog wit+ D)
proaching zero, when the bandwidth increases. k=1 !
The spectral parametey is defined as follows:

tisefodt+®)]  j=12 1)
:@: \1- M O=gv<1 (12) N being the number of frequency intervais in which the PSD
Ax Px ol SO S (w) is discretized andby the random phase angles uniformly

Unlike the irregularity factorg approaches zero for narrow-banddistributed in the range 2. Also, introducing the values ob-

processes and increases, approaching one, when the bandwi@ifted by Eq.(21) in Egs.(6a), (16), and(18), the corresponding
increases. samples of the amplitude and angular velocity processes can be

obtained.
: : In Fig. 1(b) the sample functiong,(t) andy,(t) of the pro-

3 Further Properties of Analytic Processes cessesY,(t) and Y,(t) (obtained using random phase angles

In the previous section the spectral parameters have been inggual for both processesnd the corresponding amplitudes are
duced in the frequency domain. In this section they will be reviseported; it is possible to note that, althougf(t) andy,(t) are
ited in the time domain taking into account the properties of thentirely different, the amplitudes are exactly coincident. It is also
analytic processes and using the definitions given in Egjs. to be noted that the peaks pj(t) follow the amplitude, whereas
the peaks ofy,(t) are often smaller. It could be shown that if the
frequency shiftAQ)—co then all the peaks of,(t) lie in the
Ax(t) function.

In Fig. 2(a) sample functions of the processeg_(t), obtained

3.1 Time-Domain Properties of Analytic Processes. The
time derivatives of the analytic proceX¢t) defined in Eq(1) are
also analytic processes:

dn n n R . ) . . .

LX) = ——Y(t) i — (1), (13) using th_exj_(t) fL!nC'[IOI’lS above defined, are plotted versus time.

dt dt dt From this figure it can be noted that the real pa&?(t)/AXj(t) of

Furthermore, using Ed5) it is possible to write both processes are coincident, whereas the imaginary(p);zjr(s)
. . . ) are exactly the same but shifted of a constant quantity equal to
X(1) =[Ax(t) +T1Ox(t) Ax(t) Jexd 10 x(1)] AQ, e,
A t ) . _ .
:{Ax&;+i®x(0 X0, w4 Ox, (1) =0y (1) +A0. (22)
X

Moreover, the sample function (ﬁ)xl(t) (the broad-band pro-

Equation(14) can also be rewritten as i .
ces$ fluctuates between positive and negative values, whereas for

X(1) = wy(t)X(t), (15) AQ sufficiently Iarge,@xz(t) is always positive. The behavior of
wx(t) being a complex frequency defined as the @Xj(t) functions implies that the vectof,(t) always rotates
At X(t toward the positive direction, whereas the vec{eft) sometimes
wy(t)= ﬁ +i®x(t): Q (16) rotates in the negative direction. Obviously the variations of
Ax(t) X(1) ®xj(t) with respect to their mean value become less relevant as

The imaginary part ofvy(t) is the angular velocity of the vector AQ) increases, i.e., when the bandwidth of the process decreases.
X(t) in the complex plane, whereas the real part is related to theConsidering thay;(t) is the projection on the horizontal real
time variation of the amplitude. axis of the vecto;(t) rotating in the complex plane, it follows
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Fig. 3 PSD of type (a) and PSD of type (b) used in the numerical simulations

that yj(t) becomes zero, i.e., a zero crossing occurs wlien  quency of its derivative. As an exampleXft) is narrow-band so
= /2 or 3m/2. Moreover, the extrema of;(t) occur when their that the®(t) function does not own large variations in time, the
derivative crosses the zero level, i.e., when the derivativg(@]  peaks of thex(t) samples are almost equispaced in time and the
reaches the angular positiofis = /2 or 3m/2. ranges have amplitude similar among them.

When the vectox(t) rotates always in the same direction it In Fig. 2(b) the sample functions of the process@§ (t) and
happens that the maxima g{t) are always positive, the minima . 1
are always negative, and between them a zero crossing alw&g(t) are plotted versus time. Comparing the sample function of

occurs(Fig. 1(b)). Two consecutive extrema having the same sig'@X (1) with that 0f®x (1) in Fig. 2@) it can be noted that the
can occur if the vectox(t) changes the direction of rotation two ! !

times without crossing the angular position corresponding to ti0 functions are far from each other, but they become closer and
zero |eVe|(®xj:7T/2 or 37/2); in fact the extrema of/;(t) also closer increasing\(2, as can be noted comparing the sample func-
occur near the instants in whick(t) changes the direction of tions of ©.(t) in Fig. 2b) and®y(t) in Fig. 2@a).

rotation. From these observations it is possible to affirm that the succes-

In the case in which the peak and the valley of a range have t§gn of the extrema mainly depends on the rotation mode of both
same sign, the amplitude of such a range is related on both the

amplitude of the vector and the phase angle covered by the vecﬂ)rx(t) andX(t) processes in the complex plane. In particular:
between them; if such a phase angle is small, the corresponding the amplitude of each range not crossing the zero value is
range will be small too, independently from the amplitude of thstrictly related to the amplitude of each phase angle covered by
vector. Furthermore, while each range is completed the derivatitfe vectorx;(t) without changing direction, and

vectorX(t) covers half a round in the complex plane reaching the 2 these phase amplitudes are related to the angular velocity
angular positions@'xfw& or 3m/2; this implies that the ampli- @4(t) of the derivative vector due to the fact that the extrema
tude of each phase excursion of the vectfr) (and so the am- occur when the derivative vector reaches the posit®ns /2
plitude of the corresponding ranges related to the angular fre- or 3#/2.
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Fig. 4 Sample functions and range distributions of the process A; with PSD of

type (a) and of the process B, with PSD of type (b) having both the same param-
eters ax=0.15 and qx=0.74
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As a confirmation in the next paragraph it will be shown that It has been observed in the previous section that two distinct
the spectral parameters are related to mean values objige) ~Processes having the same shape of the one-sided PSD but shifted
and @(t) functions. of AQ) in the frequency domain exhibits the same amplitude but

different phase angle®y(t) and angular frequenc®«(t), the
latter related by means of E2). Furthermore, the succession of

3.2 Time-Domain Interpretation of the Spectral Param- the extrema mainly depends on the rotation mode of the vector
eters. The physical significance of the two spectral parametefgocess itself and its derivative. For these reasons it is not a sur-
define_d above can be better understood by using the definitionmfse thatgy and ay are only related to the variation of the phase
_analytlc process given in E@p). It can be shown that the follow- angle®(t), O@4(t), and@y(t) in the time domain.
ing relationships hold: Equation(30a) shows thatjy depends on the ratio between the
total phase angle covered in the negative direction and that cov-

Qx=E[Ox(1)] (239) ered on the whole by the vect¥(t); in the case of narrow-band
px=E[|Ox(D)|] (23p)  Processes it i®y(1)>0, E[Ox(t)]=E[|®x(t)]] andqx~0.
Equation(30b) shows that thewy parameter is given by the
Px= \/(E[|®x(t)|])2—(E[@X(t)])z (24) ratio between the absolute values@j(t) and ®x(t) functions
that correspond to the ratio between the total phase angle covered
where the symbok| means absolute value. in both the positive and negative directions by the process vector

These relationships can be obtained by looking at the fact thly py its derivative. In the case of narrow-band processes it is
the probability density ofAy(t), O«(t), and O@(t) for normal (;)x(t)*@idt) and ay~1.

processes can be written as Therefore, the spectral parameters are related to the total phase
Ay Ai angle covered in the positive and negative directions by the vec-
Pa,= —€xXp — 5— (25a) tors and not to the single excursiofrenges in each direction;
consequently, they and ax parameters are inadequate to fully

1 describe their statistical distribution.
— 0= ®x$ 27

Po,=1 27 (250)
0 otherwise 4 New Parameters for the Characterization of Spec-
— tral Contents in Random Processes
Po, = - Px . (26) In this section new parameters are introduced in order to quan-
2[(Ox— Q)2+ p5]%2 tify the bandwidth of processes and their effectiveness is validated

. by means of proper digital simulations.

Equations(23) to (24) show that As previously stated, all the attempts to directly relate the range

« O, is the mean value of the(t) function and it is directly distribution of a wide-band processes to its PSD have not been
proportional to the phase angle covered by the pro¥égsin the successful. It has been recognized that processes having the same

positive direction minus that covered in the negative direction, ‘d’?‘f:‘ue ofa (i.e., éhe ggm_e distrLbution of peakﬁwe '(;‘ genﬁral a
« py is the mean value of the absolute value of fhg(t) Jiferent range distribution, whereas it is self-evident that pro-

function and it is directly proportional to the whole phase angl(éeshseﬁ having dn_‘feLent dynarljlmc characte;ls::cs can %wn (I;’ShDs
covered by the proces¥(t) in both the positive and negativeWIt the same ratio between the pasition of the centroid and the

direction radius of gyration about the centroid, i.e., the same paramggter
o is’ proportional to the double of the whole phase ang| oreover, it has been observed that the succession of the extrema
X

. : I epends on the rotation mode in the complex plane, not only of
d by th t) in th tive direction. . AR .
covered by the proces(t) in the negative direction the procesX(t) but also of its derivativeX(t). These consider-

Moreover, by using the well-known relationship ations suggest that parameters involving higher order spectral mo-
. _ 2 ments and quantities related to the angular velocities of the first
Sx(w) = 0"Sx(w) (27) " derivative of the process should be introduced in order to quantify
one can write more accurately the bandwidth of the process.

By comparing Eqs(9) and(28) one realizes that the bandwidth
parameters of the derivative of a process can be obtained from
that of the process given in Eg4.1) and(12), increasing by two
the order of the spectral moments. Taking into account these con-

_ \/E: E[|04]] (280) siderations, the bandwidth parameters relative to the derivative
Px A X processX(t) are introduced:

)N .
9x=;j=E[®x1 (28a)

px=(EL|Ox(D)]])*~ (ELOX(1)])2. (29) N ¥
=—=
Then, by means of simple algebra, the spectral paramgtand Px NoNg
the irregularity parametegy can be rewritten in the time domain - .
as E[|0x/1)*~ (E[0])?
) \/( 1O~ (EIO° (o
(E[lOx/])?

(E[|©x11)*~ (E[0x])?

ax= \/ ; 5 (309) )
(E[10x/D) ek [ AR E[64]
. ax=—=\—-= _

E[|Ox]] _ px - Px TAze E[|OK]
_EH@_ i a ; (30) These parameters are expected to allow a more complete charac-
X terization of the spectral properties of random processes.
From these relationships some further considerations on the bekn order to prove this statement, several numerical simulations
havior of stochastic processes can be made. have been carried out using different shafp@gsmodal, bimodal,

O=<ax=<1. (32)

ax
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Fig. 5 PSDs of the processes

A, and B, having both ay=.76, qx=~.47 ax=~.97 and qx=~.20

etc) of PSDs. As an example, in the following the results relative In particular, Fig. 4 shows the sample functions and the range
to the bimodal PSD type@) and(b) shown in Fig. 3 and defined distributions of a couple of processes, one with(antype PSD

as
oo (2.1h+3.4dh+ .25hd?>— .1)/ w? 0.l=w=<2.1
ho? 2.1+d<w=<4.1+d
(33)
(2h+6.2d+d?+8.61)
)= (0.650+. 10517 +.9)w? Lose=21 4

hlw? 21+td<sw<4.1+d

(h=.004,d=7.56) calledA; and one with ab) type PSD b
=.675,d=.072) calledB,, having the same parametarg and

gx (equal to 0.15 and 0.74, respectivelglative to the process
but with different analogous parameters relative to their deriva-
tives (qx=0.82 anday=0.78 forA;, qx=0.57 anday=0.31 for
B,). It can be seen that the process is characterized by many
cycles with intermediate ranges mixed to a few cycles with large
and small ranges whereas the prod@sss characterized by many
cycles with large ranges mixed to cycles with very small ranges.

are shown. The choice of these PSDs is due to the fact that sucf!oreover, Fig. 5 shows two PSDs, one of tyge) (h
bimodal spectra not only can assume a wide range of the specfral17-4.d=—2.17) calledA, and one of type(b) (h=7.51,d
parameters relative to the proce§80]) but they allow one to =1.14) calledB, having a very different shape but the same
obtain different values of the parameters relative to the derivatig@ectral parameteigy~.76, gy~ .47 ax~.97, qx~.20. Figure 6

process, simply varying the two parametendd (Fig. 3). From

shows two corresponding sample functions and the range distri-

PSDs, the(a) and (b) sample functions of processes having difbutions. From this figure it is possible to see how the equality of
ferent dynamic characteristics have been simulated by meansthsf four selected parameters ensures the coincidence of the range

Eq. (21).

distribution since the small deviation observed is negligible for
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Fig. 6 Sample functions and range distributions of the process A, and B,

having the same parameters
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practical application purposes. In other words, for practical pur- 9 < g

poses the range distribution is unambiguously related to the pa- il oy X0
rameterse andq of both the process and its time derivative, and m, m,|C; —~=-—
consequently accurate relationships between the range distribution

and PSD should take into account these four parameters. k, k,

The identification of the spectral parameters on which the range
distribution of a wide-band process depends is the first step in thig. 7 Two-degree-of freedom system considered in the prac-
detection of the relationships between range distribution and PSDal example
The second step consists in the determination of closed-form ex-
pressions relating the relevant spectral parameters to the range
distribution. Obviously, it needs further study, but at this stage efrag pressure coefficie@ and areas,) joined to a baséhaving
the research some practical results can already be obtained. Asrizs m,, stiffnessk, and damping coefficient,) has been
example, closed-form relationships between PSD and the rangsidered.

distribution have been obtained by Petrucci and Zuccaf2llpin
the particular case of broad-band processgs<(1, q,>0) whose
time derivative is a narrow-band procesg & 1; g;~0). In this
case the ranges have a Rayleigh distribution:

o r? a5
P(r)—M—ReX M2 (3%)

Figure 8a) shows the PSEBxd(f ) of the displacement process
X4(t) of the m; mass(antenna obtained by solving the differen-
tial equation of motion of the system through the normal mode
method([20]). As an example the following values of the param-
eters have been assuméd=0.01,V,,=20 m/sL=60m for the
wind velocity spectrum andm;=100kg, m,=1000kg, k;
=100Nsmm?, k,=3000Nsmm?, ¢,=¢,=0.1, C=0.9, and

i_n which the modal valud is related to the the standard devias, =1 n¥ for the system. From the analysis@td(f ) follows that
tion oy and the spectral parameters andqy of the process by a x ,(t) is a wide-band displacement procegs~0.58 andq,

third order polynomial, i.e.,

3 w
— zZ W—2Z
MR_O'XE z Gwz¥xdx
w=0 z=0

being the polynomial coefficientg,,, obtained by a best-fitting

(36)

procedure carried out using the least square technique and gi

in ([21)).

5 Practical Example
In the following, as a practical example, Eq85)—(36) have

~0.795 with narrow-band derivatived;~1, q;~0). Therefore,
the corresponding distribution of the range can be calculated di-
rectly using the closed-form relationshi5). For comparison
Fig. 8(b) shows the range distribution obtained by digital simula-
tions along with those obtained using Ed85) and (36). The

ood agreement between the curves corroborates that for practical
%%?poses, direct relationships between range distribution and PSD
can be obtained provided that one take into account the four spec-
tral parametersy,, gy, ay, andqy.

6 Conclusions
The dynamical properties of random processes are usually de-

been used for the direct evaluation of the range distributions of tggrined by means of spectral parameters, such as the regularity
displacements that occur in a structure subjected to wind forcesetor o, and the spectral parameteg, that are defined in the
In this case the excitation is the horizontal velocity of the winqirequency domain. In this paper, using the concept of analytic

that can be represented by a random proeggs), whose spec-
trum is given by([22]).

L/V1o

—, (37)
T2+ (fLIV,2]5®

Sx,(f)=4KV3

process, the physical and mathematical meaning of such param-
eters has been readdressed and a time-domain interpretation has
been given. In particular it has been shown that these spectral
parameters are related to the angular velocity of the analytic pro-
cess in the complex plane.

The above interpretations as well as further considerations on

wheref is the frequency in HzK is a factor in the range 0.005 the behavior of the analytic processes have shown that the irregu-
<K=0.05 depending on the local wind profil;q is the mean larity factor and the bandwidth parameter of the process cannot
wind speed at 10 ft above the ground, dnds the length scale give a full probabilistic description of the ranges in a random
related to the structural dimensions. For simplicity, a structupgocess. As a confirmation it has been shown that processes hav-
represented by a two-degree-of-freedom systéi. 7), as an ing the same values of both these parameters can have quite dif-
antenna(having massn,, stiffnessk;, damping coefficient;, ferent range distributions.

s, T . T o
g (a) ) b
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4t — — by simulations
| ——— by Egs.(35-36)
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Fig. 8 PSD of the output displacement process X, (a) and relative range distribution  (b)
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Chung-Cheng Institute of Technology,
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Professor, The classical Savin solution for the stress induced in an orthotropic plate containing an

. ~ Mem.ASME, elliptical hole places no restrictions on remote rigid-body rotations. In this paper the

Mechanical Engineering Department, Savin procedure is used to obtain a solution for which remote rigid-body rotations are
University of Washington required to be zero. The validity of these new results is demonstrated by comparing

MS 352600, predicted displacement fields near a circular hole in specially orthotropic composite

Seatle, WA 98195 panels with those measured using mdieehniques as well as those predicted using the

finite element methodiS0021-8936)0)01303-9

Introduction solution presented by Savin be appreciated, since several modern

. . . L experimental method¢for example, those based on the moire
Dge tp the Increasing use of poly.merlc cqmposnes n stryctur fgct) are in essencesftechniqugs used to measure displacement
Zpgggitlg?i’hitr?ec:ﬁhlgtrvglt?ssp;ﬁz(ﬁs Igger:fasi;ilr? tuilgecchuigﬁzl ff€lds rather than stress or strain fields. A successful comparison
P pic p 9 ; ' between displacements predicted on the basis of the Savin proce-

other iregularitiede.g., see Ref§1-7)). Several analytical tech- .y, o g experimental measurements requires use of the solution
nigues have been developed to study these problems, mcludB}gsented herein

the integral transform method8]), singular integral equation
method([9,10]), Stroh formalism([11]), and the classical com- .
plex function method[12,13). Using a mapping approach, SavinFundamemal Equations

[12] developed a general solution method to determine the stresghe two-dimensional equilibrium equatioriseglecting body
fields induced in orthotropic plates containing an elliptical holéorces, the strain-displacement relations, and the compatibility
and subject to remote uniform loading. The corresponding solgondition are listed below as Eq4)—(3), respectively:

tions for strain fields can be obtained by substituting Savin’s so-

lutions for stress into the orthotropic form of Hooke’s Law. One 90 + aTXV:o, 9oy Iy _ 1)
would expect that the displacement fields induced in the plate ax - dy ay X

could then be obtained by integrating the strain fields to obtain ou ov g ou
displacement fields. However, as mentioned by Sésée the first ExT o, &yT T, Y=o T 2
footnote which appears on pg. 38 of REE2]), the solutions he 28 ay ax dy

derived are based on an incomplete specification of rigid-body Pe, Pe, Iy

rotations. Hence, the displacement fields inferred from the Savin = 3)
expressions for stress are only valid for a special class of prob- ay 2 2

lems. Specifically(as will be discussgdthe displacement fields whereu, v are in-plane displacements in tleandy-directions,

are only valid for some types of specially orthotropic laminatess, oy, Ty are in-plane stresses, aed, e,, and y,, are in-

and furthermore when such laminates are subjected to remote rgiane strains. Hooke’s law for a generally orthotropic plate can be

mal stresses onl{i.e., whenrfy: 0). expressed as
The objective of this article is to reformulate the Savin solution

> ¢ . X =ay o tao,ta
so as to account for rigid-body rotations and therefore obtain ex- Ex7 AnIx T 120y Aa6Txy

pressions for in-plane displacement fields that are valid for any v = Aro0w+ oo+ AorT (4)
- i A N A y 12V x 22Yy 267 xy

orthotropic plate and for any combination of in-plane loading. The

fundamental equations that govern the behavior of orthotropic Yxy= Q160x+ 82607y T AepTxy

plates are summarized in the next section. Simplifications t%ﬁereaij are elements of reduced compliance matrix. To insure

occur if the plate is specially orthotropic rather than generallyygistaction of the equilibrium equations, stresses are expressed in
orthotropic are also discussed. Next, a revised solution basedi@fns of an Airy stress functiot) (x,y):

the Savin approach and which accounts for rigid-body rotations Is

presented. Finally, predictions based on the revised solutipn are 702U J?ZU B 9?U
compared with experimental measurements obtained using moire Iy YT YT T xay ®)
techniques as well as with predictions based on the finite element = . . ) ]
method. Substituting Eqs(4) and(5) into Eq.(3) results in the biharmonic

It is appropriate to note that the difficulties associated with trRauation for generally orthotropic materials:
Savin solution are avoided if solutions based on the Stroh formal- 94U 24U Py
ism are used 11]). Nevertheless, the Savin solution is still widely 8or a7~ 286, 3.+ (281t age) V2
employed([4,14—16). It is important that the limitation of the Yy y

U 9*u
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Through a consideration of potential energy, Lekhnit$kis] S1=*iBy Sy4=*ifs.
has shown that the characteristic equation has no real roots. Thus, ' '

for a generally orthotropic plate the roots of the characteristic Case Ill.  y=X\: In this casea=0, 8, = 8,= B, and the roots
equation are always complex and are of the form are repeated and purely imaginary:
Si5ma1Tify Spumax*ifs (8) S12347 Tip.
whereay, a,, B, andB, are real constants angh>0, 8,>0. For Cases | and Il the Airy stress function can again be ex-
For generally orthotropic plates; # a, and 8, # 3,. pressed using two distinct roots, in accordance with(Bg.Equa-
The Airy stress function may be expressed using two distinen (9) is not valid for Case Ill, however, since in this case the
roots, and has the general form roots are repeated. Isotropic plai@s symmetric quasi-isotropic
composite platgscorrespond to Case lll, since in these instances
U=2 R4 Fy(x+s1y)+Fa(x+s5y)] ®) En=E,=E, vy=v,=v, G,=G,=G=E/2(1+v), and
where Rg] denotes the real part of the quantity in brackets. Fdpereforex=A=1, satisfying the conditions for Case IIl. The re-
further simplification, let sponse of isotropic or quasi-isotropic plates is not the focus of this
paper and will not be further discussed. The interested reader is
dF41(z1) IF(2,) referred to Refs([11,17)).
b(z1)= 9z, W(zy) = 9z, (10) In summary, the solution for a thin orthotropic plate subjected

to in-plane loading involves finding complex functi@®z,) and
wherez; =x+s,y, z,=x+syy, and ¢(z,) and y(z,) are com- (z.) which satisfy the appropriate biharmonic equati@ng.,
plex functions. Substituting Eq$9) and (10) into Eq. (5), the Eqs(6) or (14)) and the prevailing boundary conditions. Once

stress components may be expressed as these functions are found the problem is solved.
T2 RESP (21) + S50 (2,)]
oyy=2 R ¢'(21) + ' (2,)] (11) Application of the Savin Solution Procedure
Ty=—2 RES19'(21) + 5,0 (2,)]. A plate containing an elliptical hole with major and minor axes

) . i ) a andb, respectively, and referenced to an in-plaiiey coordi-
Expressions for the displacement fields can be obtained by applyte system is shown in Fig. 1. Savin found that the following

ing Hooke’s law(Eq. (4)) and integrating, resulting in complex functions are applicable in this case:
u=2R Z;)+ Z,) —(R*LiC*
§Pp1¢p(z1) +p2ih(z,)] (12) d(21)=(B* +iC*)z,+ ¢g (18)
v=2 Rdq;$(21) +q214(2,) ] W(z,)=(B'*+iC'*)z,+ ¢
where ) whereB*, C*, B’*, andC'* are real constants angh(z;) and
P1. P2, d1, 9o are complex constants, defined as follows:  y, (z,) are holomorphic functions of the following form:
p1=ayssi+a—ases a_; a_, a_j
) ¢0(zl)=a0+z—+27+?+...
P2=ay;S;+ a0~ a6, (13) ! 1 1 (19)
a =p,+ E + E + E
Q1=2a158;+ S Az Yo(22)=Do z,

a To satisfy the stress boundary conditions at infinity, Savin sub-
Oy=ay,5,+ 22 as. stituted Eq.(18) into Eq.(11) and letz,,z,— %, resulting in the
S following three equations:
The preceding results are simplified if the plate is specially
orthotropic(i.e., if a;g=ay=0). In this case the biharmonic and
characteristic equation&qs. (6) and(7), respectively reduce to

J*U J*U ot
Qoo @ +(2a;,+ age) W + allﬂ_y4 =0 (14)
as*+ (2a;,+ agg) 2+ ay=0. (15)

The characteristic equation can alternatively be written as
s*+2ys?+A%=0 (16)

where

EXX EXX
X= (_Zny_ ny> ., A= E_yy 17)
For specially orthotropic materialg;=a,=«. Hence, if asg
=ay=0, then the form of the roots of the characteristic equation
may be grouped into three possible cag@smpare with Eq(8)).

Case |l. x<\:Inthis casex#0, B,= B,= 3, and the roots are
complex and of the form

Slv3=aii,8 82’4=*aii,8

Case Il. x>\: In this casea=0, 8;# B,, and the roots are Fig. 1 Schematic of infinite orthotropic plate with elliptical
purely imaginary and of the form hole
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©_Q2(R* ik 2% ik 2R* L iC~* I —
oy =81(B*+iC*)+si(B'*+iC'*)+s3(B*+iC atis,b a—is,b 1
X 1( ) 1( ) 2( ) Z wz(gz): 5 §2+ 5 52.

+85(B'* +iC'*)
After inversion, the functions becom{&avin showed only nega-
oy =(B*+iC*)+(B* +iC*)+(B'* +iC'*)+(B'*+iC'*) tive sign here

2
e 2 E )

— 7, =8, (B* +iC*)+5,(B* +iC*) +5,(B'* +iC'*) 6= a+is;b

+5,(B'* +iC'*) 2,* 22— (a2 +s2b?)
where oy, o, and 7,, are remote in-plane stresses. Since 2 a+isyb '
Egs. (20) represent three equations in four unknowns, a fourtPh
equation is needed to uniquely determine the four constants
B*, C*, B'*, and C'*. Savin simply assumedC*=0, [£1/<1  and [{5]=<1
while acknowledging that by doing so displacement boundary
conditions associated with rigid-body rotations are not necessaril
satisfied. The following relatively simple expressions for th8
remaining three constants are obtained if it is assumed tff?gl(g

e sign is taken such thg{ and{, are inside a unit circle, i.e.,

Traction-free boundary conditions are enforced around the
undary of the hole to solve for the holomorphic functions
1) and(z,). The boundary conditions around an elliptical

C*=0: are
u fSYd +C i JSXd +C (24)
v STy, ——= s+ L
. 0':+(a§+,8§)0';°+2a27';°y oxX 0o " ay o "
2[(ay— ay)?+ (85— B1)] whereC, andC, are arbitrary real constantX,, andY,, are re-
" 5 " " sulting forces along the elliptical hole actingxrandy direction,
B/* — — oy Flai— Bi—2aay) 0y —2a57y, 1) ands is an arc measured from an arbitrarily chosen point on the
- 2[(ap—ay)?+(B5—B3)] contour of the hole. Inserting E¢Q) into Eq. (24), the boundary
conditions may be expressed in terms of the complex functions
" s 5 o d(z1) and ¥(z,):
C,*=(al—az)ax+[a2(a1—,31)—a1(a2—,32)](7y R
2Bl (a—ay)®+ (B3~ BY)] fi=— f Yods+Cy=2 R ¢(21) + §(2)]
0
, Ll —(ad-pD . (29)
2B (ar— a0+ (Bo— BD]’ fp= fo Xods+ Cp=2 RY 516h(20) + 5,(25) .

However, if rigid-body rotations are taken into account, then in
generalC* #0 and therefore Eq$21) do not correspond to any Inserting Eq.(18) into Eq. (25), the boundary conditions can be
particular level of rigid-body rotation. Savin notdgee the first expressed in terms of the functiogg(z;) and y(zy):

footnote which appears on pg. 38 of REf2]) that the needed _ .
fourth equation can be obtained through consideration of the 2 R&®o(Z1)+#o(z2)]=F,~2 RE(B* +iC*)z,+BInz,

rigid-body rotation at infinitely distant points of the plate. Rigid- +(B'* +iC'*)z,]=1°
body rotation is related to in-plane displacement fields according ! (26)
to 2 RE 81 g(21) +S,100(25) |=T,—2 Re s, (B* +iC*)z4
— 1(dv _ou +5,(B"*+iC'*)z,]=19.
2\ox ay)’

Now, solving the problem by finding functiong(z;) and
It is herein assumed that rigid-body rotations are zero at infinityj(z;) reduces to finding the holomorphic functiogg(z;) and

which implies o(Z,). The Schwartz formula is applied and the following nota-
tion is introduced:
Jv Ju
x|y (22) Kl:(B*+|C*)(a+|slb)+2(B *+iC'*)(a+is,h)
Equations(20) and (22) form a system of four equations, and
were used to determine the four unknown real constBhtsC*, _(B*+iC*)(a—is;b)+(B"* +iC'*)(a—is;b)
B’*, and C'*. Since the associated algebra is extensive, Egs. 2= 2
(20), (22) were solved symbolically using MAPLE. The general- @7)
ized expressions for the constaB, C*, B’*, andC'* are _ Sy(B*+iC¥)(a+isyb) +s,(B™* +iC"*)(a+isyb)
lengthy and appear as Eq#&1)—(A4) in the Appendix. In all of 3T 2
the following discussion the constari@s, C*, B'*, andC’* are ) ) ) )
those given by EqgA1)—(A4) rather than Eqs(21). _sy(B¥+iC¥)(a—isihb)+s,(B'* +iC'*)(a—is;b)
The remaining solution steps are identical to those described by 4™ 2

Savin[12], although intermediate and final results differ some-h |
what due to the revised form &*, C*, B’*, andC’*. In order There results

to find the holomorphic functionshy(z,) andy(z,), a mapping K- LK.
is used that transfers the physical area outside the elliptical hole bo(L1)=— (KstKa) = 5(K1tKo) LN
into a unit circle according to S1— %2 28)
at+is]b  a—ish 1 (K3+Kg) —S1(Ky+Ky)
Z1=wq({1)= {1+ — bo( &)= — Ry
2 2 4 S1—S;

(23)
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Fig. 2 (a) Measured v-displacement fringe pattern induced ina  [0/%45/90], boron-epoxy panel containing a 25.4-mm-dia circular
hole, subjected to oy =93 MPa ([6]). (b) v-displacement fringe pattern for a [0/+45/90] boron-epoxy panel containing a 25.4-mm-

dia circular hole, subjected to a-;°=93 MPa, predicted according to the original Savin solution. (c) v-displacement fringe pattern
for a [0/%45/90], boron-epoxy panel containing a 25.4-mm-dia circular hole, subjected to o, =93 MPa, predicted according to the

revised solution. (d) v-displacement fringe pattern for a  [0/=45/90], boron-epoxy panel containing a 25.4-mm-dia circular hole,
subjected to a-;°=93 MPa, predicted by a finite element method  (ANSYS) analysis.

where\; and\, are arbitrary constants of integration and werd@his completes the solution of the problem. The expressions for
ignored by Savin. Finally, the holomorphic functions are obtained-plane stresses and displacemeifigs.(11) and(12)) can now

as be expressed in more physically meaningful forms, as follows:
_ ~ilboy +iasyoy +(bs, +ia) 7] 0= 05 +2 R S3hg(20) + S500(22) ]
bo(z1)= — &1
2(s1—3p) (29) . , ,
oy=0,+2 Re ¢o(21) + ¢p(2,) ] (30)

—i[boy +ias,oy +(bs,+ia) ]
2(s1—5y) z Tyy= Ty~ 2 RE&S10(21) + S2100(22) ]

Uo(z5)=

530 / Vol. 67, SEPTEMBER 2000 Transactions of the ASME



/)
/

/ N

V N

[/ ] A

Fig. 3 (a) Measured u-displacement fringe pattern induced ina  [0/+45/90], boron-epoxy panel containing a 25.4-mm-dia circular
hole, subjected to o;=93 MPa ([6]). (b) u-displacement fringe pattern fora  [0/+45/90], boron-epoxy panel containing a 25.4-mm-

(b)

dia circular hole, subjected to oy =93 MPa, predicted according to the original Savin solution. (c) u-displacement fringe pattern
for a [0/%45/90] boron-epoxy panel containing a 25.4-mm-dia circular hole, subjected to o-j,°=93 MPa, predicted according to the

revised solution. (d) u-displacement fringe pattern for a  [0/%45/90], boron-epoxy panel containing a 25.4-mm-dia circular hole,
subjected to (r;°=93 MPa, predicted by the finite element method  (ANSYS) analysis.

and v=0v"+2 R4 q1¢o(21) + Ao tho(Z2) ]
u=u“+2 R p1do(z1) + P2tho(Z,)]

X
=Y(ag20, a0y +8z67yy) + 5 (@160, + @260y + Bg6Tyy)
o o oy, Y » o 5
=X(8110 T 8150y +a167yy) + 5 (81605 T 8260y + Ag6Txy) +2 R qybo(21) + Uatbo(22)]

+2 R p1do(zy) + P2tho(Z2)] (31) whereu” andv™ are remote in-plane displacements. Note from
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Table 1 Comparison of the predicted response at the point X
=377mm, y=1085mm for a [0/=45/90], boron-epoxy panel
containing a 25.4-mm-dia circular hole, subjected to o-;’
=90.3 MPa (13,100 psi)

Savin Revised ANSYS
u (mm) -0.136 -0.136 —0.136
v (mm) 1.86 1.86 1.92
oy (MPa) ~0 ~0 ~0
ay (MPa) 90.3 90.3 90.3
Tyy (MPa) ~0 ~0 ~0
&, (wm/m) —359 —359 —359
&y (um/m) 1713 1713 1666
Yxy (perad) 0 0 0

(b)

532 / Vol. 67, SEPTEMBER 2000

Eq. (19) that all terms within R¢ ] in Egs.(30) and(31) approach

zero ax,,z,— . Hence, these terms represent the disturbance in
the stress and displacement fields due to the presence of the ellip-
tical hole.

Comparisons Between Experimental Measurements and
Analytical/Numerical Predictions

Displacement fields near a 25.4-mm-diameter circular hole in
composite panels have been measured using geometric, asire
reported in Refs([6,7]). In this paper these previously reported
experimental measurements will be comparedaopredictions
based on the original Savin solutioth) the revised solution as
presented above, arid) predictions obtained using the finite ele-
ment code ANSYS. Specially orthotropi®/=45/00], laminates
subjected to uniaxial tensile loadings were considered in both

Fig. 4 (a) v-displacement fringe pattern for a  [0/%=45/90],
boron-epoxy panel containing a 25.4-mm-dia circular hole, sub-
jected to Tfy=l7.2 MPa, predicted according to the original
Savin solution. (b) v-displacement fringe pattern for a [or
+45/90] boron-epoxy panel containing a 25.4-mm-dia circular
hole, subjected to rfy=17.2 MPa, predicted according to the
revised solution. (c) v-displacement fringe pattern for a [0/
+45/90] boron-epoxy panel containing a 25.4-mm-dia circular
hole, subjected to rfy=17.2 MPa, predicted by the finite ele-
ment method (ANSYS) analysis.

Transactions of the ASME
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([6,7]). However, in([6]) the composite panel tested was com- ) ) .

posed of a boron-epoxy material system, wheread[7f) the Iable 2 ComEarlson of the predlct_e'_d response at the point X
panel tested was a glass-epoxy panel. Although an identical staEkrlgg. mm, y=161 mm .for a [0/=45/90], bo.ron'epoxy paneL
ing sequence was used in both studies, the material properi@ taénmga?zs%%‘l'g:;n_d'a circular hole, subjected to X
involved are such that the panel tested(i]) corresponds to : P

Case ll(i.e., the roots of the characteristic equation are purely Savin Revised ANSYS
imaginary, whereas the panel tested([7]) corresponds to Case

Vo

% \
// é //, (:\ \\ \\\\\

Fig. 5 (a) u-displacement fringe pattern for a  [0/%=45/90],
boron-epoxy panel containing a 25.4-mm-dia circular hole, sub-
jected to Tfy=l7.2 MPa, predicted according to the original
Savin solution. (b) u-displacement fringe pattern for a [or
+45/90] boron-epoxy panel containing a 25.4-mm-dia circular
hole, subjected to rfy=17.2 MPa, predicted according to the
revised solution. (c) u-displacement fringe pattern for a [0/
+45/90] boron-epoxy panel containing a 25.4-mm-dia circular
hole, subjected to rfy=17.2 MPa, predicted by the finite ele-
ment method (ANSYS) analysis.

I (i.e., the roots of the characteristic equation are complex u (mmg 8'(1)28 8'%’8 8'%‘8
Comparisons will also be made for pure shear loadings, i.e., for ; (Mpa) —0.04 —0.04 —04
ox=0,=0, 7,,#0. Since experimental measurements are not oy (MPa) ~0 ~0 ~0
available for this second loading condition, in this second case Txy(MP2) 17.2 17.2 17.2
. . - - . £y (wm/m) ~0 ~0 ~0
comparisons will be made betweea the original Savin solution,  * ¢/, yy/m) ~0 ~0 ~0
(b) the revised solution, ang) finite element predictions. yiy(,u,rad) 605 605 606

Geometric moireis an optical technique that reveals in-plane
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Fig. 6 (a) Measured v-displacement fringe pattern induced ina  [0/%45/90] glass-epoxy panel containing a 25.4-mm-dia circular
hole, subjected to oy =198 MPa ([7]). (b) v-displacement fringe pattern for a  [0/=45/90] glass-epoxy panel containing a 25.4-
mme-dia circular hole, subjected to (r;°=198 MPa, preﬁdicted according to the original Savin solution (resolution reduced to 50.8
pm). (c) v-displacement fringe pattern fora  [0/%45/90] glass-epoxy panel containing a 25.4-mm-dia circular hole, subjected to
(r;°=198 MPa, predicted according to the revised solution. (d) v-displacement fringe pattern fora  [0/=45/90] glass-epoxy panel

containing a 25.4-mm-dia circular hole, subjected to o, =198 MPa, predicted by the finite element method ~ (ANSYS) analysis.

displacements in the form of alternating light-and-dark linegriginal solution, the revised solution, and the finite element
called “fringes.” To facilitate a direct whole-field comparisonmethod analysis, will be compared at a particular point far re-
between measured and predicted displacement fields, a prograoved from the circular hole.

was written in-house and used to plot the fringe patterns predictedDetails of the geometric moirenethod are given elsewhere
by the original and revised Savin solutions. Similarly, in-plan€18]). In simplest form, a gratingcalled the specimen grating
displacement fields predicted using ANSYS were plotted as camended to the specimen surface. The specimen grating is then
tour lines of constant displacement. This procedure allows a diregéwed through a second gratirigalled the reference grating
whole-field comparison between measured and predicted displa®éien a load is applied the specimen grating is deformed, and an
ment fields. In addition, displacements calculated according to timterference patterfi.e., a fringe patterndevelops which repre-
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sents in-plane displacements. Measurement resolution depends on
the grating frequency. Different grating frequencies were used Tiable 3 Comparison of the predicted response at the point X
([6,7]), and hence the fringe patterns reported[#7]) were ob- =377 mm, y=1085mm for a [0/+45/90]; glass-epoxy panel
tained at two different levels of resolution. The predicted fringeontaining a 25.4-mm-dia circular hole, subjected to oy
patterns presented in the following sections were therefore gengrk98 MPa (28,700 psi)
ated using different resolution levels, i.e., the resolution assumed

—

Fig. 7 (a) u-displacement fringe pattern for a  [0/+45/90];
glass-epoxy panel containing a 25.4-mme-dia circular hole, sub-
jected to o =198 MPa, predicted according to the original
Savin solution (resolution reduced to 50.8 pm).  (b)
u-displacement fringe pattern for a  [0/+45/90], glass-epoxy

panel containing a 25.4-mm-dia circular hole, subjected to oy
=198 MPa, predicted according to the revised solution. (c)
u-displacement fringe pattern for a  [0/%=45/90], glass-epoxy
panel containing a 25.4-mm-dia circular hole, subjected to 0';
=198 MPa, predicted by the finite element method (ANSYS)
analysis.

(b)

to create the predicted fringe patterns is varied from one subsec- Savin Revised ANSYS
tion to the next, as appropriate. u (mm) _gg'; _111'%4 _11'1061
For brevity, the finite element meshes used will not be de- l;x(?]Mmga) ~0 ~0 ~0
scribed in detail. Briefly, six-node triangular elements were used o, (MPa) 198 198 198
during the finite element method analyses. Convergence studiesTxy (MPa) ~0 ~0 ~0
were performed to insure that the mesh densities used were suffi-gX (ﬁmfm) Igi%% _1%7%)0 _fg (?1%0
cient to accurately capture details of the predicted stress/ ) {(urad) "0 "o 0

displacement fields. At least 800 elements were used in all cases
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Fig. 8 (a) v-displacement fringe pattern for a  [0/%45/90]
glass-epoxy panel containing a 25.4-mme-dia circular hole, sub-
jected to 75,=17.2MPa, predicted according to the original
Savin solution (resolution =2.76 um). (b) v-displacement fringe
pattern for a [0/+45/90], glass-epoxy panel containing a 25.4-
mm-dia circular hole, subjected to 7, =17.2 MPa, predicted ac-
cording to the revised solution (resolution =1.38 um). (c¢)
v-displacement fringe pattern for a  [0/%45/90], glass-epoxy
panel containing a 25.4-mm-dia circular hole, subjected to T

=17.2 MPa, predicted by the finite element method (ANSYSJS
analysis (resolution =1.38 um).

\

!

—
e

e

-
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Composite Panel With Purely Imaginary Roots placement fields are all essentially identical, and closely resemble

The material properties for the boron-epoxy panel studied Eﬂe measured moirpatterns. Also, numerical comparison of pre-

6]) were reported to beE,.=113 GPa (16.40 Ms), E cted displacements, strains, a}nd stresses at the paint

:[5])27 GPa (7.25 Ms), ny:X2X8.5 GPa (4_:{3 Msi, a?1d Yy =377 mm, y= 1085 r_n_n), a point p_|c_ked randomly from among _

=0.45. The roots €, ,s,) of the characteristic equation for thisthe nqdal point positions in the finite ‘eleme‘nt mgthod mesh, is

material are purely imaginary and equal 1.083%d 1.4135 ™Made in Table 1. Excellent agreement is obtained in all cases. Itis

respectively. Hence, this panel corresponds to Case IL. concluded that, for this loading condition and material system/

o ) ) ) stacking sequence, predictions obtained using the original Savin

Uniaxial Tensile Loading. Measuredv and u-displacement sojution, the revised solution, and the finite element method

fields induced by a remote tensile stressréf: 90.3 MPa(13,100 analysis are all essentially equivalent.

psi) are shown in Figs. @) and 3a), respectively. These images ) ) )

were obtained using a fringe multiplication technid[), result- ~ Pure Shear Loading. Comparisons between predictedand

ing in an effective grating frequency of 197 lines/nt&®00 lines/ U-displacement fields caused by a remote pure shear stress of

in.). This frequency corresponds to a displacement measuremegt=17.2 MPa(2500 psj are made in Figs. 4 and 5, respectively

resolution of 5.08um. The corresponding predicted displacemertas previously mentioned, experimental results are not available

fields are plotted in Figs.(B—d) and 3b—d). The predicted dis- for a pure shear loadingin these figures thésimulated fringe

—

<
<
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glass-epoxy panel containing a 25.4-mme-dia circular hole, sub-

jected to 75,=17.2MPa, predicted according to the original
Savin solution (resolution =2.76 um). (b) u-displacement fringe

( ) pattern for a [0/+45/90], glass-epoxy panel containing a 25.4-

mm-dia circular hole, subjected to 7, =17.2 MPa, predicted ac-
cording to the revised solution (resolution =1.38 um). (c¢)
v-displacement fringe pattern for a  [0/%45/90], glass-epoxy

panel containing a 25.4-mm-dia circular hole, subjected to Ty

‘ 4 =17.2 MPa, predicted by the finite element method (ANSYSJS
/ \\\\ analysis (resolution =1.38 um).
(b)

patterns correspond to a resolution of 0.83®). Both figures
contain images which werés) predicted by the original Savin
solution, (b) predicted by the revised solution, afg predicted

w©

Table 4 Comparison of the predicted response at the point X

. . . ! =599 mm, y=161 mm for a [0/+45/90], glass-epoxy panel con-
using ANSYS. A careful inspection of these figures reveals th?e{ining a 254-mm-dia circular

for this loading condition the displacement fields predicted by the17 5 mpa (2500 psi) hole, subjected to Txy
original Savin solution differs markedly from that predicted by the

revised solution and the finite element method analysis. In Fig. 4 Savin Revised ANSYS
the differences are particularly noticeable at the 12 o’clock and-6 U (mm) 0.396 0156 0156
o'clock positions around the hole circumference, whereas in Fig. ;, (mm) —0.295 0544 0544
5 the differences are most noticeable at the 3 o'clock and 9 ¢, (MPa) —-0.03 -0.03 —-0.03
o’clock positions. The discrepancy is further highlighted by a nu- o, (MPa) ~0 ~0 ~0
merical comparison of predicted displacements, strains, and Txy(MP/a) _1Z2 _117-2 _117-2
stresses, again at the far-field poipt=599 mm, y=161 mm). gxgﬁm,ﬁg o 0 0

This comparison is made in Table 2. It is seen that predicted 'yiy(lu,l'ad) 1940 1940 1940

strains and stresses are identical in all cases, but the displacemests
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predicted by the original Savin solution do not agree with predic- Pure Shear Loading. Comparisons between predictedand
tions based on the revised solution or the finite element methodlisplacement fields caused by a remote pure shear stress of

analysis. rjfy: 17.2 MPa(2500 ps) are made in Figs. 8 and 9, respectively
. . (as previously mentioned, experimental results are not available
Composite Panel With Complex Roots for a pure shear loadingIn Figs. §a) and 9a) the simulated

The material properties for the glass-epoxy panel studied ffinge patterns correspond to a resolution of 2uffi, whereas in
([7]) were reported to b&,,=25.9 GPa(3.75 Msi, E,,=19.5 Figs. 8b,c) and 9b,c) the (esolutlon was increased to 1:,‘&81.
GPa(2.83 Msi, G,,=8.89 GPa(1.29 Ms), and v,,=0.36. The As before, a lower resolution was required to plot the fringe pat-
roots (5;,S,) of the characteristic equation for this material aréern predicted by the original Savin solution. Also as before, the
complex and equat-0.1698+1.0594 and 0.1698 1.0594, re- revised solution and the finite element method analysis are in
spectively. Hence, this panel corresponds to Case |I. close agreement, and differ substantially from predictions based

o ] ] ] on the original Savin solution. A numerical comparison that con-
Uniaxial Tensile Loading. The measuredv-displacement firms these discrepancies is made in Table 4.

field induced by a remote tensile stressaﬁff= 198 MPa(28,700

psi) is shown in Fig. 6a). This image was obtained using a grat-

ing frequency of 39.4 lines/mit1000 lines/in). corresponding to a Summary and Conclusions

measurement resolution of 254n. The corresponding predicted g cjassical Savin solution for the stress induced in an ortho-
displacement fields are plotted in Figeb&d). If a resolution of q5ic piate containing an elliptical hole places no restrictions on
25.4 um is used to plot the fringe patterns predicted by the origkamote rigid-body rotations. In this paper the Savin procedure is
nal Savin solution, the resulting fringes are too dense to be plofseq o obtain a solution for which remote rigid-body rotations are
ted. For present purposes the displacement fields predicted by g ireq to be zero. The validity of the revised soiution is dem-
original Savin solution(Fig. &b)) have therefore been generateq,sirated by comparing predicted displacement fields induced in

based on a reduced resolution of 5. The fringe patterns composite panels with those measured using geometric’ rasire
predicted by the revised solution and the finite element methgﬁe” as those predicted using the finite element method.

analysis(Figs. c,d)) have been generated using a resolution of |+ 5" concluded that stress and strain fields are properly pre-

25.4 um. Excellent agreement was achieved between predictiogged py the original Savin solution in all cases. This would be
based on the revised solution and the finite element method anglysecteq; since the stress boundary conditions were satisfied in
sis, and furthermore these results closely resemble the experi

the original Savin solution is grossly distorted, since rigid-body,
rotations have not been properly accounted for, as previougl

discussed. placements inferred from the original Savin solution do not in-

The transverse-displacement field was not measured(fifil).  ¢de rigid-body rotations is for specially orthotropic panels with
A comparison between predicteedisplacement fields is made in urely imaginary roots, subjected to remote in-plane normal

Figs. Ma—c). Once again, excellent agreement is achieved b fresses onlyi.e., when,=0).

tween the revised solution and the finite element method analy5|s,|.he revised solution presented herein can be used to accurately

\;Vé}ﬁ{%z:]si;h;;(tﬂ?ggcgurgetrg :ilgilg-t?cr)‘ceigl(r:(t)etgtitc)))rll ;he original Savmpredict the stress, strain and displacement fields induced in any

A numerical comparison of predicted displacements strain%rthOtrOpi(? pe_mel containing an elliptical hole and subjected to
and stresses, again at the far-field poift=377 mm, y any combination of remote in-plane stresse$, o ,andrxy.

y
=1085mn), is made in Table 3. It is seen that the predicted

strains and stresses are identical in all cases, but the displacemgrbtaendix

predicted by the original Savin solution do not agree with predic-

tions based on the revised solution or the finite element methodExpressions for the four constar®$, C*, B'*, andC'* are
analysis. listed below:

correct, in the sense that the predicted values contain an un-
Mown level of rigid-body rotations. The only case in which dis-

1
= ﬁ{[2a11|sl| IS, (301045_ 30‘%“2"‘ azﬂi_ alﬁﬁ) +agy(— 2“2_ 2“253"‘ 20113%"‘ 20‘2)]7@

2 2 2, 2 4 2.2 2.2 202 2, o4 2 2 2 02 3
+laysi|?sol(3a5—dayay+ BT~ B3+ af) +aylai—aspi— BiB5+ 3055~ daja,B5+ Bi+3asas+ 2ai B~ dayal)

+2a,4s1|[So| (ap— aq) oy +[ays,] |So|(Bas— B5— 35+ B]) +axl — a5~ B3+ ai+ BT) —2a14sy/|So| (o~ ay) oy} (AL)
o 1L 2 2 2 2 3 2 2 3
B* = 5{_[2a11|51||52|(3alaz_3a1“2+ a1~ a13) tan —2a5—2a,65+ 2a1 1+ 2a7) | Tyy

2/n 2 2 2, 2 4 2,0 22 2,2 2, 4 2 2 2 p2 3
+laysil|so|“(Bai—daray+ By — Bi+ ay) + @zl ap— aiBy— BB+ 3asB1— 4ayasBi+ Byt 3atas+ 2585 — 4ajay)

+2ayds1[S,| (a1 — @) Joy—[anlsi|[S,|(3a3— B5—3ai+ B2) + a — al— Bo+ i+ Bl —2asdsi|s| (as— ar)]on  (A2)

1
C* = 55,0 ([aulsills:|(2as03 - Batas + a3pi—6ayarfy +al+2aifi+ B1+3aif3~ B1A))

4 4 2.2 3 2 2 2 202 p2p52 2 3 2, 2 2 2
+ag By ay— asBi—2aia,— 2a B+ Bajas+ 3aiB— B1B3) | Tyt a11lS1|%[Sol (a3 — 2ar a5+ ajap+ apBT—3ayB5
2 4 3,2 4 4 4 2 2 2 2 2 3 2 2
+2a185) g —ajar— axf1t 201 B~ a1 2ana;— ap B3+ 3atasfr+ 3ata; — 2aias 1)
2 2, 2 2 3 2 2 2 3 2
+a,dS1|[So](ay— 2105+ Bi+ ai— By) Joy+[aqsi|[S,] (a3 — Bajay+ apB1—3a,B5+ 2a1 +2a, B7)

2_ 3 2_ 2 2 2 2 2, 2 2
+ag —axBy— ay— axBi—ajart 21 B85+ 2a a5) —aid Syl Sy (ay— 2+ BT+ ai— B3)] oy} (A3)
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1

C* = 55p ([aulsilIsil(2aiar—3afas + alf—Basarfi+ gt 20365+ B3+ 3a3pi~ BiBY)

4 4 2,0 3 2 2 2 202 p2p2 2, 3 2 2 2 2
Jr'5122(/31*5“1*5“1:32*2“1“2*2“1012,32+35“15“2+3“2[31*Blﬁz)]hﬁ[all|31||32| (@y—2ajar+ ajas+ ay f5—3a1 81
2 4_ 3,2 4 4 4 2 02 202 3 2 202
T2a,B7) T ag —aja;— a1+ 2a,B1— a1, 2aiay— a1 f581+ e a1+ 3atar— 2ara537)
2 2. 2 2 3 2 2 2 3 2
+326|51||52|(a1_20‘10/2"‘52"'0‘2_,31)]0'y+[311|51||52|(‘11_30’1“2+01,32_301,31+2a2+2(1252)

2 3 2 2 2 2 2 2, 2 2
+ag(—aBi—ai— a1y~ ajas+2a,B1+ 20 a,) —aid S| So| (@] — 2 an+ Bo+ an— B1) oy} (Ad)
where

Isi| = af + g7
%1=a11(a§+ Bi)(a§+ﬁg)+a22
%2=ai—2a a,+ a5+ B+ 2818+ B
%3=a’—2aja,+ a3+ B2—2B.1B,+ B3

D=%1%2%3.
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Surveillance of Mechanical
Systems on the Basis of Vibration
Signature Analysis

A comprehensive experimental study is presented to assess the utility of a proposed
structural health monitoring and damage detection methodology based on vibration sig-
nature analysis of the test article. The approach uses a time-domain least-squares-based
method to identify the reduced-order system matrices of an equivalent linear model whose
order matches the number of available sensors. A quantification of the level of the system
nonlinearity is obtained by determining the residual nonlinear forces involved in the
system dynamics. The approach is applied to an intricate mechanical system about which
virtually no information was available; i.e., the system was essentially a “black box.” By
using similar measurements from a reference version of the test article and two subse-
quently modified versions, it is shown that through the use of higher-order statistics
involving the probability density functions of key system parameters, a reliable measure
of the extent of variation of the system influence functions may be obtained. The use of

measures of the identified quantities’ dispersion offers a practical method for quantifying
the reliability of the estimated changes involved in dealing with real-world (i.e., not
noise-free) measurements that result in uncertain estimates of the physical changes in the
article being monitored[S0021-8936)0)03303-]

Los Alamos, NM 87545

the model updating approach to infer damage is often an ill-
o . ) ) ) conditioned, even nonunique, inverse problem. To overcome these
1.1 Motivation. An important engineering field and re-gjfficulties (associated with measurement noise and other uncer-
search area, which has been receiving an increasing amounifhtieq, researchers have made advances through the use of sta-
attention for many years, is the general field of structural healffaiicq approache§7—9)). Although some research has been con-
monitoring. Health monitoring refers to the use of in situ nondey,cted using nonparametric modelitaytificial neural networks,

structive sensing and analysis of system characteristics, includigg) for the health monitoring problem, it has proven difficult to
structural response, for the purposes of detecting changes in {i&1e and quantify damage from nonparametric system models.
underlying system which may indicate damage or degradati

Apolicai f this field broad f svst ; Otherefore, almost all of the work in this area has involved, in
pplications ot this Tield span a very broad range of Systems rogy e form or other, the modeling of systems with an equivalent

dispersed civil infrastructure components, to_high-performangge s mogel through least-squares-based identification methods.
aerospace sys_tems, to_del_lcate _medl_cal_dew_ces. . Notable contributions in this class of approaches include Agba-
_Representatlve_ publications in this field includ&echanical bian et al[10], Ghanem and ShinozuKa1], Loh and Tou[12],
Signature Analysig[1)) and others[2-5)). and Juang et aJ13]. In addition, experimental application studies
1.2 Technical Challenges. While there is a definite consen-include Farrar and Jauregii4], Zimmerman et al[15], Loh and
sus about the great potential of the structural health monitorif§u [16], and Shinozuka and Ghand7]. Most damage detec-
field, there is also a general agreement that, in view of the num&gn studies have concentrated on off-liie., batch modeiden-
ous considerations that influence the choice and effectiveness dffigation, but progress has also been made in the on-line identifi-
structural health monitoring method6]), no one approach is cation and damage detection probléwhich is useful for real-
likely to be suitable for dealing with all the situations and systenfine active control applicatiopsfor general dynamic systems
that are encountered in practical cases to detect, locate and qu’@_ZQ)-

tify the extent of damage or deterioration in a target system. Con-1 4 Scope. This paper is focused on the development and
sequently, there is a need for a “toolkit” of methods to deal withimplementation of a diagnostic approach for monitoring the con-
the variety of approaches required to cope with all the potentigkion of intricate mechanical systems on the basis of vibration
applications. signature analysis. While the proposed method is applicable to
egeneral structural systems, it is ideal for situations where the com-
(H%exity or the inaccessibility of the target system components pre-

through response signature analysis is by the model updating pﬂy_des the use of traditionall parametric system identifi(;ation ap-
cedure. The basic idea is to use dynamic test dztaally modal proaches for model-based diagnostic applications. In this paper, a

parameters or acceleration time historiés continually update sgs;ergw tédi?sn%ﬂﬁatﬂl :Zhrc])lr(\qs:n\:\glclietl)ii e():(gloargidntiggt t?l:]tl)gl\évcgﬂf]or
the stiffness distribution of a model of the structure. In practicés9 y P g capal ’ .
its usefulness in the context of damage detection or health moni-

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF toring' The effectiveness of the approach s studied by analyzing

MECHANICAL ENGINEERS for publication in the ASME QURNAL OF APPLIED acw?'l experimental d_ynamm response data from_ an _unknown

MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Mar.physical system at various stages of structural modification.

9, 1999; final revision, May 5, 2000. Associate Technical Editor: A. A. Ferri. Dis- This study is focused on evaluating a time-domain approach for

cussion on the paper should be addressed to the Technical Editor, Professor '-e""ﬁértermining an optimum reduced-order linear as well as nonlinear

Wheeler, Department of Mechanical Engineering, University of Houston, Houston . . .

TX 77204-4792, and will be accepted until four months after final publication of theystem from vibration response measurements. The npnllnear

paper itself in the ASME GURNAL OF APPLIED MECHANICS. component of the dynamic response is not treated as residual er-

1 Introduction

1.3 Literature Review. The most common approach to th
problem of structural health monitoring and damage detecti
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ror, but rather as a significant component of the system’s re- rT(ty)

sponse, which may be more sensitive to certain classes of damage rT(t,)

and deterioration. Section 2 of the paper presents an overview of R= : 4)
the formulation of the approach. Section 3 describes the experi- T

mental setup, instrumentation, and preliminary data processing. r(tn)

Section 4 applies the proposed approach to three physical systeg using the notation above, the grouping of the measurements
with intentional variation in their internal components. Section gan be expressed concisely as

discusses the results and indicates the potential advantages as well A
as the limitations of the methodology. Ra=b ®)
whereR is a block diagonal matrix whose diagonal elements are
equal toR, a=[aj,a3, ...,a; 1" andb is the corresponding
vector of excitation measurements. Keeping in mind fRas of

2.1 Overview of Time-Domain Identification of Equivalent ordermXxn wherem=Nn,, andn=3n,(n;+ny), then if a suf-
System Matrices. Consider a discrete nonlinear multi-degreeficient number of measurements is taken, this will resultrin
of-freedom system which is subjected to directly applied excita=n. Under these conditions, least-squares procedures can be used
tion forcesf,(t) as well as prescribed support motioggt). The to solve for all the system parameters that constitute the entries in
motion of this multi-input/multi-output nonlinear system is govflfi
erned by the set of equations

MSXq (1) + CFyXq (1) + KX (1) + M Xo(t)
+ CiXo(t) + K igxo(t) + fiy (1) =f4 (1), (Y

2 Formulation of Time-Domain Identification Ap-
proach

a=R'b (6)

whereR" is the pseudo-inverse & ([21]). In the more general
case where the measurements associated with certain degrees-of-
. . freedom are more reliable than others and/or measurements accu-
where fy(t) =an N1 column vector of directly applied forces; nated over certain time periods are to be emphasized differently
X(t) = (xa(t),xo(1)) " =system displacement vector of ordem;(  from the others, a symmetric, nonsingular, usually diagonal error
+n); xi(t)=active degree-of-freedom displacement vector Qfeighting matrixW can be used with the overdetermined set of
ordern,; and xo(t) =prescribed support displacement vector ogquations in Eq(5), thus resulting in the approximate solution
orderny; M%;, Cf;, Kf,=constant matrices that characterize thg22])
inertia, damping, and stiffness forces associated with the uncon-
strained degree-of-freedom of the system, each of ang&m,;

e e e _ H : ; ;
Mio. Cip, Kjg=constant matrices t_hat characterlze the inertia, 5 5 Application to Example Four-Degree-of-Freedom Sys-
damping, and stiffness forces associated with the support motiopsy, with a Single Excitation. Consider an example four-

each of ordem;Xngy; andfy (t)=an n; column vector of non- degree-of-freedom system governed by
linear nonconservative forces involving(t) as well asxy(t). ) )
This section is concerned with a time-domain method for the iden- My (1) +Cy(t) + Ky (t) =g(t). (8)

tification of the system matrices appearing in Ej.as well as the £ cjarity of presentatiosimplified subscript notationvectory

nonlinear forces acting on the system. The representation of {8 seq 1o represent the system’s absolute displaceént and
identified system will be in a form that allows the prediction of it t) is used to represent the excitatifyt). It is assumed that no

transient response under arbitrary excitations, by using conveipnart motion is involvedi.e., xo(t) =0). Furthermore, matrices
tional numerical techniques for initial value problems in ordinary 11, C11, andK, are denoted b, C, andK, respectively.

differen_tial equgtion_s. . . Noting that in this cas@;=4 andny=0, in expanded form Eq.
Consider a linearized version of the system under dlscussw becomes

and assume it is governed by
MEXq (1) + CFyXq (1) + KX (1) + M $Xo(t)

a=(RTWR) 'RTWhb. @)

MY+ MY+ MigYa+ Mgy s+ CigY1+CioY2+ Cigya+CiaYa

. +Kiy1+Kioya+Kisystkiays=gi(t) 1=123,4. ©)
+C¢ t)+KS t)="f,(t). 2
10%0(t) + Kioo(t) =Ha(t) @ Note that the response vectt) in this case is
Let the response vecto(t) of order 3f1;+ny) be defined as e e e T
T ot T T T T r(=[Y1,Y2,Y3,Ya:Y1,Y2,Y3.Ya:Y1,Y2,Y3,Ya] - (10)
F(1)= (X2 (1), X1 (1), X1 (1), X (1) Xo(1), X (1)) - ®) If response measurements at timeg., . . . ty are made, then
Introducing matrixR the observation matriR becomes
|
Vaty)  Va(t)  Va(ty)  Va(t)  ya(t)  ya(ty)  ya(ty)  Va(ty)  ya(ty)  ya(t)  ys(ty)  ya(ty)
Vi(ts)  Va(tz)  Va(tz)  Va(tz)  yi(ty) Yoty ya(ts)  Va(ty)  yi(ty)  Va(ta)  ya(ta)  ya(ts)
R=| Vi(ts) Valts) Va(ts) Va(ts) Vyi(ts) Yalts) VYa(ts) Ya(ts) yi(ts) yalts) Ya(ts)  ya(ts) (11)
Valtn)  Va(tn)  Va(tn)  Va(tn)  Ya(tn)  Ya(tn)  Ya(ty)  Va(tn)  ya(tn)  Ya(tn)  ya(tn)  Ya(tn)

and then,=4 parameter vectora;, a,, a3, anda, are

_ T
a;=[M;1,M;j5,M;3,M;4,Ci1,Ci2,Ciz,CiarKi1,Kiz,Kiz,Kial

i=1,2,3,4.

Journal of Applied Mechanics

Note from Eq.(11) that the number of rows iR is equal toN, the

number of time samples used to observe the response, and the

number of columns oR equals three timen,, wheren,;=4, is

the number of the system degrees-of-freedom. The excitation
(12) measurement(t), by(t), bs(t), andb,(t) are
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bi()=[gi(t1),gi(t2), ... Gi(tW]" 1=12,34. (13)

then the number of independectlumnsof R is (3n;—1). This
fact can be easily established from E§) with i=2, since the

If a numberN=3n, of time sample measurements is used t®HS being zero indicates that the 12 measurements
constructR in the manner indicated in E¢L1), then one obtains Y1(1).Y2(1),Ya(t).ya(t), .. ..y1(t),ya(1),ys(t),ya(t) are linearly

Ra=b (14)
where
R 0O 0 O o b,
. lo R 0O O || | P
R=l o o R o “|a| P7|by| @
00 0 R “4 by
or alternatively
Ra;=b;, i=1n;. (16)

Note that the order oR is (NX3n,), the order ofe; is (3n;
X 1), and the order df; is (NX1). Now if noneof the excitation
forces is identically equal to zero, then the rankPofs rankR)
=3n,, and least-squares methods can be used in the manner
cussed above to uniquely determiae

a=R'b, (17)
or
a=R'b,, i=1n,. (18)

On the other hand, ibne of the excitation forces, e.gg,(t) =0,

Y1 Y2 ¥3 Ya Y1 Y2 Y3 Ya V1 Y2¥3 % 0 0 0 00 00 00O0O00O0O0O0O0O0O0
0¥y 00 0y 000y 00¥%¥ Yy ¥aY¥¥%0O0O0O0O0O0O0O0O0 Moy
00y 000y 000y 00y,00yO00O04yO0y¥V¥Vyyysys0O0O Cn
000y 000y 000y 00y, 001y¥001y07V¥ 0y 0y Y¥Va 2

542 | Vol. 67, SEPTEMBER 2000

dependent. The rank oR in this situation becomes rarRj
= 3nl_ 1.

Returning to the example under discussion, it is clear that un-
lessall components of the excitation vectg(t) are #0, the rank
of R will be less than the dimension of the corresponding param-
eter vectora, consequently the system parametercannot be
uniquely determined. In general, for an degree-of-freedom sys-
tem governed by Eq2), the rank ofR is

rank R)=3(n;+ng)—(n;—ny) (29)

wheren;=the number of activénonzerg components of the ex-
citation vector. Thus, unless;=n,, the 3,(n;+ny) compo-
nents of the system parameter veciocannot be uniquely deter-
mined without imposing some restrictiofsuch as symmetiyon

i Ie_nature of components.

Yater in the experimental phase of this study, the symmetry
restriction on the system matrices will be imposed because the
excitation forces are not applied to all of the degrees-of-freedom.
The implementation of this still involves the basic least-squares
solution of the formRa=b but here theR and thea (which will
have fewer parameterwiill be organized in a special way. In this
case specifically, where only degree-of-freedom #4 is directly ex-
cited, theRa=b expression which guarantees symmetric system
matrices will be written as follows:

S o oo

| kyy
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Due to space limitations, thR matrix is not written more explic- Table 1 The four equivalent linear identification cases and
itly; however, each row in this expression is meant to represehgir parameters for the analysis of the reference system data

multiple rows corresponding to the considered time steps. In oth=c e Number | Toral Number of Prs. | Starting Pr. | Ending Pr.

words each element is a column vector, for example

=[y1(t1),y1(t2), ... .yi(ty) 1. Notice also that, because the con-— Case 2 5000

straint of symmetric system matrices is imposed,ahesctor has

only 30 parameters as opposed to the full 48 which would no Case 4 20480

mally describe the generd¥l, C, and K matrices for a four-
degree-of-freedom linear system.

2.3 ldentification of Nonlinear Residual Terms. Once the

Incr.
Case 1 1000 1 2000 2
1 10000 2
Case3 . 10000 1 20000 2
1 20480 1

3 Experimental Data Sets

linear portion of the system response has been identified, there are

several approaches using hyb(mhrametric/nonparametjieden-

3.1 Experimental Setup. The test article is a mechanical

tification techniques which can be used to identify the nonlinegystem composed of numerous internal components and materials
residual response. For example, the residual could be least-squifé significant nonlinear characteristics. Information concerning

fitted in much the same way as done previously, however, withte system’s shape, size, material, location of sensors, etc., was
set of basis functions generated from a series expansion of vari®@$ available. Therefore the test situation is as close as one would

products ofx(t), x(t), andX(t) system response ternig23]).

get to a “black box” experiment. The system was monitored by

Alternatively, the authors have found artificial neural networkneans of four accelerometers and a single force gauge in the
identification approaches to be quite effective in identifying noriroximity of one of the sensors. A block diagram of the dynamic

linear system dynamid$23,24)). Further background information System representation is shown in Fig. 1, indicating one input and
and references on the use of neural networks to model Systt.gﬁr outputs. The excitation source consisted of an electrodynamic

dynamics can be found in Housner et [d].

.
%
— >
— ‘
—
%3
I

Fig. 1 “Black box” experimental mechanical system with
single force input and four acceleration outputs
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Fig. 2 The first 1000 samples (or 0.122 seconds ) for each
channel from the “black box™ experimental reference data set
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exciter which furnished a wide-band excitation to the system.

Note that the proposed monitoring approach imposes no restric-
tions on the test signal, provided it is persistent enough to yield an
applicable mathematical model.

3.2 Data Acquisition. The sensor data was digitally
sampled and recorded at a rate of 8192 Hz, in other words every
1.2204< 10 * seconds. The total duration of the recordings was
2.5 seconds, thus resulting in 20,480 samples per recording chan-
nel. A sampling of the unprocessed recorded data is shown in Fig.
2. It can be clearly seen from Fig. 2 that the frequency content in
the force record most clearly resembles that in the acceleration
record of channel #4. Therefore it is not surprising to find that the
force is applied at the channel #4 location.

3.3 Preliminary Data Processing. Before doing any sys-
tem identification analysis, the supplied data was further pro-
cessed to obtain the displacement and velocity records corre-
sponding to the available acceleration records. The suggested
frequencies of interest were also given to be above 150 Hz, so
therefore high-pass filtering was also performed. The following
step-by-step approach was adopted for the integration procedure
from acceleration to velocity and then to displaceméb:high-
pass filter the acceleration recor@) numerically integrate the

Table 2 Estimates of equivalent linear system matrices for
Case 1

Mass Matrix (IM®)

0.564 | 2.205 | -0.085 | 4.061

2205 | 5.032 | -1.068 | -2.197
-0.085 | -1.068 | -3.677 | -0.398
4.061 [ -2.197 | -0.398 | -3.866

Damping Matrix (C*®)

10%x
-0.276 | -2.300 | -2.156 | 6.241
-2.300 | -0.481 | -0.685 | 0.128
-2.156 | -0.685 | -1.714 | -1.245
6.241 | 0.128 | -1.245 | 8.087

Stiffness Matrix (K®)

108 x
1.382 | 0.356 | -0.390 | 1.384
0.356 | 0.202 | -0.139 | 0.271
-0.390 | -0.139 | -0.025 | -0.146
1.384 | 0.271 | -0.146 | 1.292
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Scaled Mass Matrix Scaled Damping Matrix Scaled Stiffness Matrix

Case #1

Case #2

Case #3

Case #4

Fig. 3 Comparison of scaled estimates of system matrices for reference
system—Cases 1 through 4

Linear Least-Squares Fit of ACT Data - using1000 every other samples —15.33% is NL

150 - T T ' '
—_— 14 exact
- - - linear est. of f4
— NL residual
100 N i
!
! |
50 f

M / :
]
-50
-100 -
1
~150 1 1 1 1 !
0 0.01 0.02 0.03 0.04 0.05 0.06
time (sec)

Fig. 4 Time history comparison of excitation force (solid line ), linear least-squares estimated

force (dashed line ), and the nonlinear residual force  (thick line ) for Case 1 identification of the
reference system
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NL Residual fit when using x, xd, and xdd up to 3rd order terms — ACT 21.8% err

25 T T T T T

20

1 1
0.03 0.04

time (sec)
Fig. 5 Time history comparison of the nonlinear residual force
sidual force estimate (dashed line ), modeled with combinations of
to third-order powers for the reference system

1 L
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Variation in Identified System Parameters over 150 Statistical Segments - Reference Case
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(solid line ) and the re-
x(t), x(t), and X(t) up
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Fig. 6 Sample identification results for the reference system corresponding to
(c) kq1 . In each plot, the dashed line represents the mean value of the parameter.
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7 Variation in Identified k; over 150 Statistical Segments for Systems 1, 2 and 3
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Fig. 7 Sample identification results for k4, corresponding to (&) the reference system (system
#1); (b) system #2; (c) system #3. In each plot, the dashed line represents the mean value of the
parameter.

resulting processed acceleratid) high-pass filter the resul¢4) different numbers of time samples used for each case. Table 1
numerically integrate the processed velocity, d@b§l high-pass shows the four cases and the corresponding time samples used.
filter the result. Note that the high-pass filtering at each stage takéste that increasing the number of points used in the least-squares
care of the removal of a nonzero offset or linear trend often reelution changes the aspect rdfie., an increase in the number of
quired after integration of acceleration records. The pass-band fitws) of the R observation matrix, and hence leads to a more
tering was performed with no phase distortion. overdetermined set of linear equations.

As previously mentioned, the experiments were conductedThe resulting system matrix estimates for Case 1 from the least-
three times with the same test configuration and amplitude efjuares fitting process are shown in Table 2. Similar results are
excitation. The test organization reported that structural modificgbtained for Cases 2-#23]). The first noticeable feature of these
tions. were made between tests. Therefore this CO"eCtion.Of Idm"amic system matrices is the presence of negative terms along
provides an excellent platform to perform health monitoringhe diagonal of the matrices, in other words, the matrices are not
analysis to detect system changes. The data from System #1 Wilkitive-definite. Of course, negative mass, negative damping, or
be referred to as the reference system, and more in depth analygigative stiffness does ndphysically exist. These fictitious
done on this system is reported in the following section. terms are attributable to the equivalent linearization of nonlineari-
ties. This difficulty is quite intuitive, i.e., that physically unusual
terms may arise from an equivalent linear fitting of a truly

4.1 Identification of System Matrices. Using the formula- nonlinear system response. Other than noticing the nonpositive
tion of Section 2, the optimum equivalent system matrices and tgefiniteness of the identified system matrices, little intuitive sense
residual nonlinear force, based on the assumption of a single é&n be gained from the listing of the matrix coefficients. There-
citation and three symmetric system matrices, was determindare, an alternative representation follows in Fig. 3. Here the ele-
The least-squares identification was performed four times withents of the system matrices have been scaled columnwise by

4 Analysis of Reference System
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Fig. 8 Probability densities of stiffness matrix coefficients for 150 statistical averages of
the equivalent linear identification of the three different systems. System #1 (solid line ),
system #2 (dotted line ), system #3 (dash-dot line ).

mu_ItlpIylng by the maximum value of the response variable to () =F1() =8 (1) =f1(t) — MEX(t) — C®x(t) — K°®X(t).
which they correspond. (21)

This figure better illustrates the similarity in the estimated sys-
tem influence coefficients obtained using different numbers of dis- A representative time history comparis@rom the Case 1 es-
crete samples in the least-squares solution. One may conclugidation) of the excitation forcef,, the linear estimate, and the
that for this system response, 1000 poiftsrresponding to about nonlinear residual is shown in Fig. 4. Clearly, the fitting results
30 periods of the lowest dominant frequenéy sufficient to ob- are quite good—the large as well as small peaks are well esti-
tain an accurate equivalent linear system estimate. One may aisated and all frequencies are tracked fairly accurately.
conclude that the response over the duration of the measurementsor the Case 1 simulation, which involved a least-squares fit
is reasonably stationary, because the estimates vary little depewith 1000 points, the norm of the dimensionless error ratio is
ing upon the window length used for fitting. Under more suitable5.33 percent. Comparable error values are obtained for Case
conditions for the application of this meth@lL0]), natural fre- 2—4. It is worth noting that the nonlinear component is not just
quency and damping estimates could be obtained from the corpoise,” but contains a characteristic signature of the underlying
plex eigenvalue solution associated with the estimated linear sg§stem nonlinearities. Sophisticated analysis of this component
tem equation. However, due to the nonpositive definiteness of thy aid in understanding the physics of the nonlinear system
estimated system matrices in this case, this proved to be futitharacteristic§[25]). It is noteworthy that the testing organization
From the poor physical interpretation of the coefficients in thghat furnished the data stated that the article incorporated compo-
linear system matrices one may conclude that the linear systeents with significant nonlinear characteristics. Furthermore, the
model could not accurately capture the true dynamics of thisct thatfy, is not random noise, but rather a highly correlated
system. nonlinear function of the system response is demonstrated in Fig.

5. Using the nonparametric approach of Smya8], it is seen that

4.2 Determination of Nonlinear Residual Force f{_. f, can be reasonably estimated by a series of nonlinear functions
From the results of the previous section, a best-fit linear féfice involving primarily the physical system accelerations and veloci-
may be determined for each set of estimated parameters. Takiieg as basis functions. Note that for added resolution, the scale of
the difference of this from the excitation forégt), as in Eq.1), the ordinate in Fig. 5 is about five times more sensitive than the
a nonlinear residual forch,, is obtained: corresponding scale of Fig. 4.
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Fig. 9 (a) Probability densities of the k4, stiffness coefficient for 150 statistical
averages of the equivalent linear identification of the three different systems. Each

plot has a superimposed Gaussian distribution. (b) System #1 (thin solid line ),
system #2 (dotted line ), system #3 (thick solid line ) comparison.

To further support the assertion, that the residual is the result of5.1 Comparison of PDF’s of Influence Coefficients. The
response nonlineariti€and of course, measurement ngjsather equivalent linear analysis was repeated for all three systems, how-
than unmodeled linear dynamics, the entire system was also meder, this time statistical averaging was used to get a sense of the
eled using the Observer Kalman Filter IdentificatigDKID) distribution of the system matrix coefficients. This statistical
method ([13]) and an assumed linear model with 20 generanalysis could provide a means to assess and calibrate the sensi-
modes. The rms of the residual, was only reduced by a fractionfity of identification approaches to detect, locate and quantify
a percent from the rms of the residual obtained with a four-mogiyels of structural changes. The averaging was conducted using
linear model(similar to that used in this stuglyln other words, 150 time history windows, of 2000 points each, staggered by 100
increasing the fidelity of the linear model aids little in reducin o{nts each time. Figure 6 shows representative sample¥ of

the residual component of the response. It should be noted, tha e :
other techniques, which rely on the comparison between the Hf1» and ky; corresponding to the reference system. The mean

bert Transform of the system dynamics and the frequency p@alue of each parameter is indicated by a dashed line. Note that

sponse function, can also be employed to indicate the presencdh§s fluctuation in the values of the identified parameters have the
nonlinearities([26,27). appearance of a random process. Similar results are obtained for

all the identified influence coefficients.
) ) Figure 7 shows representative samplekgfcorresponding to
5 Detection of Changes in System Parameters the reference system and the other two modified systems. For ease

In this section, the identification results from the reference sy8f comparison, identical scales are used in the three plots shown
tem are compared with results obtained from the same methodsidrfig. 7. Note that the dashed lines, which indicate the mean
Systems #2 and #3. The test organization stated that these systéafiges of the respective parameters, show a significant change in
are(physically modified versions of the reference system, i.e., thiéie mean value ok,; among the three tested systems. Further-
detection results of this study are not associated with “false posiore, it is worth noting that the level of the dispersion of the
tive” indications. The goal of this section is to evaluate the iderfluctuations with respect to their respective mean shows a marked
tification method for its usefulness as a structural health monitatifference among the three systems.
ing tool. Figure 8 shows the probability densities of the coefficients of
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Fig. 10 (a) Probability densities of the  k,, stiffness coefficient for 150 statistical
averages of the equivalent linear identification of the three different systems. Each

plot has a superimposed Gaussian distribution. (b) System #1 (solid line ), system
#2 (dotted line ), system #3 (dash-dot line ) comparison.

the estimated stiffness matrices for all three systems. Although tbempared in the lower plot in Fig. 9. This type of figure clearly
distributions appear somewhat rough due to the relatively smatows the shift in the average identified result for the three iden-
number (150 of statistical averages taken, one can see strikirtified systems, as well as showing a variation in the level of un-
differences in the mean values of the coefficients, and often ddertainty associated with the identified values. It is important to
ferences in the variance of the estimated coefficients. The sofidte here that, because all of the experiments were conducted with
line, representing the density of the estimated coefficients for ttiee same level of input excitation and presumably noise levels in
reference system, generally shows greater variance than the othermeasurements, it is justifiable to make these kind of compari-
two-system parameter estimates. It is difficult to pinpoint thsons across experiments. A similar comparison of the statistical
cause of this difference, given the standardization of the test piesults for the identification of coefficieif, (which is of course

cedure, other than to suggest that it could be related to what @Re same akS, because of the prescribed symmetry assumption
pears, from the “transfer function” representation, to be MOrg shown in Fig. 10. Again, variations in the standard deviation of

complex dynamics. Note that similar results were obtained for th&e identified results can be clearly seen; however, there is only a
mass and damping matrix coefficient estimates.

Figure 8 contains a large amount of comparative information on
the identification results for the reference and the two modified
systems. It is helpful, however, to focus on individual eIementFable 3 The mean value of the equivalent linear system stiff-
and how their identified values change with respect to the SystelL<  matrix for the reference system  (i.e., system #1 ), and its
modifications. Figure 9 highlights the differences between thg§ndard deviation over the 150 identification cases

. o e : .
identified results for thek;; stiffness term. As is shown inthe - o.co Matrix RO Std. Dev. of Stiffness Matrix (S)

previous figure, the solid line in the top three plots shows tf T 0%

probability distributions of the identifiekf, values over 150 iden- 063 01 035 105 0.133 1 0.108 | 0.023 | 0.106
tifications of partially overlapping response segments. This ti 0'122 0.087 :0'092 0'122 0'108 0'077 0'017 0'058
however, an equivalent Gaussian distribution with the mean ay— =0 505 0153 0028 10.007 T0.007 1 0.039
standard deviation of the identification results is superimpos 1‘273 0'122 _0'153 1’355 0-106 0'058 0'039 0'155
over the actualexperimentaglresults. These distributions are ther’—= : : . - - - -
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Table 4 The mean value of the equivalent linear system stiff- The time-domain identification method presented here could be
ness matrix for system #2  (left column ) and for system #3 (right  glightly modified in several ways by using recursive techniques or
column ), and the respective standard deviation over the 150 changing the manner in which the segmentation is performed dur-
|dent|f|(ia30nlc?sest. Ttt;]e dlr’?ensmnless error matrices are also ing the statistical averaging. Also, the level of structural nonlin-
presented relative fo the reference case. earity in the “undamaged” structure is potentially of critical im-

Ke-MeaxylsstfiIfnfn?ssMamx Ke- Mezzsst;];lfngsMamx portance to the success of this equivalent linearization-based
T T identification method. These issues and their potential for altering
e 0455 T 0019 0308 =575 o5 T 000 033 the results have yet to be explored. Furthermore, in order to gauge
0453 10333 10031 0.149 0158 | 0472 | 0010 | 0335 the sensitivity of the approach under discussion to detect slight
0.019 | -0.031 | -0.069 | 0.144 0.001 | -0.010 | -0.014 | 0.084 changes in the target system, a study is needed to correlate the
0398 [ 0.149 | 0.144 | 0.111 -0.224 | -0.325 | 0.084 | 0.054 magnitude of the dimensionless; parameters with a range of

measured changes in the test article.
S - Std. Dev. of Stiffness Matrix S - Std. Dev. of Stiffness Matrix
10°% 10°x .
0,093 | 0.099 | 0.004 | 0.064 0,044 ] 0.039 | 0.003 | 0.025 7 Summary and Conclusions
0.099 | 0.105 | 0.004 | 0.033 0.089 | 0.069 | 0.003 | 0.050 An experimental study is presented to evaluate the effectiveness
e R of a time-domain parametric identification approach for monitor-
- - - ' - - - - ing the “health” of intricate, nonlinear systems. The method of
V - Dim. Error of Stiffness Matrix V - Dim. Error of Stiffness Matrix approach requires the use of excitation and acceleration response
records, to develop an equivalent multi-degree-of-freedom math-
.26 | 2.708 | -0.943 | 0.637 0711 0201 | 0997 | 1176 ematical model whose order is compatible with the number of
2708 | 2.845 | -0.663 | 0.226 0.291 | 4.454 | -0.889 | -3.663 sensors used. Application of the identification procedure under
-0.943 | -0.663 | 1.788 | -1.945 -0.997 | -0.889 [ -0.448 | -1.553 discussion yields the optimum value of the elements of the
-0.688 | 0226 | -1945 | 0918 -1.176 | -3.663 | 11553 | 0.960 equivalent linear system matrices. By performing the identifica-
) tion task before and after potential structural chargesnaggin
D - Dim. Err. of Stiffness Mat. wrt to 8 D - Dim. Err. of Stiffness Mat. wrt to 8 the physical system have occurred, quantifiable changes in the
identified mathematical model can be detected.
2080 | 3056 | 11282 | -8302 8542 | 0329 11918 | 14192 The potential usefulness of the identification procedure under
3.056 | 3.193 | 3511 | 0473 0329 | 4999 | 4712 | -1.656 . : .
11282 13511 | 2630 | 7.661 11018 T 2712 T 0658 | 6115 discussion for damage detection is demonstrated by means of tests
8302 | 0473 | 7661 | -8.024 T14.102 | 7.656 | 6.115 | -8387 on a complex mechanical system exhibiting significant nonlinear

characteristics. This system is used to conduct experiments to gen-
erate high-quality data sets that are subsequently analyzed to de-
) ) . » . termine the mean, variance, and probability density functions cor-
minor change in the average identified coefficient between thesponding to each element of the identified system matrices. To
reference systerfi.e., system # Jland system #2. gain some insight into the reliability of the proposed detection
A summary of the identification results for the three systems &xneme, physically different versions of the test article were in-
shown in Tables 3 and 4. The numerical values for the fo_”OW'”\Qestigated, in which the location as well as the magnitude of the
matrices are given(l) the mean identified stiffness matrick$; “damage” was varied.
(2) the standard deviation matr of the identified stiffness ma-  The method provided clear indication of structural alteration
trix; (3) the matrixV whose elements correspond to the dimerthrough changes in the identified parameters. The dimensionless
sionless error between the mean of the identified values for theeasures like/ and D, which use the built-in uncertainty scale
modified system with the “undamaged” reference system;@nd furnished by the estimated variance of the identification results,
the matrixD whose elements correspond with the dimensionleggove to be particularly useful in detecting dominant changes.
change in the mean of the identified values for the modified syBecause the method presented here is a parametric identification
tem with respect to the reference system expressed as a multgghaeme based on a linearized model, its ability to capture the
of the corresponding standard deviation. In other words the coefverall dynamic response of nonlinear systems is of course lim-
ficients of V andD are defined as follows: ited. Further parametric or nonparametric nonlinear identification
e — o) — techniques can be employed to obtain a complete linear/nonlinear
vy = (ki —ki?)KP and di=(kj-ki)/s;  (22) dynamic model of the system dynamics by either treating the re-
wherek(® is just the mean of the effective linear stiffness coeffiSidual error as the nonlinear response component or by treating
. L . . I the entire dynamic response generally.
cient(i.e., ki) obtained for the identification of the reference sys- On the basis of this exploratory study, it appears that determin-

tem. Notice, for example, the small value ©f, for system #2 inq the probability density functions of the identified system ma-
relative to that for system #3, and how it captures the nature of F%es may furnish useful indices, that can be conveniently ex-

lower plot in Fig. 10. It should of course be noted that these typgs,.teq during an experimental test, to quantify changes in the

of r_elsullts fon trt:e _chan_gf;_e in mean and standard d?(iation are gRracteristics of physical systems without the need for virtually
available for the identified mass and damping coefficients. 5 information about the topology of the system or the nature of
. . the underlying physical phenomena that are being observed.

6 Discussion

To better calibrate and evaluate the sensitivity to detecti
slight changes in the system parameters for this R//pe of methrc);%(,:knowledgments
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reduced-order equivalent linear model parameters. One of the
dra_wbacks of the _method, w_hen applied to structur_al systeiferences
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Plastic Bifurcation in the Triaxial
st | Confining Pressure Test

Faculty of Aerospace Engineering,

Technion, Haifa 32000, lsrael Bifurcations of a circular cylinder are studied, within the context of the triaxial confining

pressure test, for pressure sensitive solids. Material response is modeled by large strain
versions of flow and deformation theories of plasticity in conjunction with the Drucker-
Prager solid. An axially symmetric deformation pattern is assumed prior to bifurcation
and only diffuse modes within the elliptic regime are considered. The governing equations

P. Papanastasiou’
Schlumberger Cambridge Research Ltd.,
High Cross, Madingley Road,

Cambridge CEBSPES are solved analytically in terms of Bessel functions and a search procedure is employed to
nglan trace bifurcation loads. Deformation theory predicts critical stresses which are consis-
tently below flow theory results, and provides practical upper bounds on experimentally
observed values of peak stresq§e&30021-893600)01403-3
1 Introduction profiles of perturbed velocities admits an analytical solution in

erms of Bessel function§Section 3 which in turn leads to a
Ianscendental algebraic eigenvalue equation for critical stresses.
Qmple calculations are presented in Section 4 and compared with

The confining pressure triaxial calibration test has traditional
served as the fundamental material characterization experimen

geomechanics. .The procledu.re centers on applying hydrost erimental data for two geomateriéastlegate sandstone and
pressure on a circular cylindrical specimen, followed by increagyrasic shale

ing the axial component of stress up to failure. In metal plasticity, The main findings of this study confirm that deformation theory
Cheng et al[1] first studied bifurcations of elastoplastic Cy"”derﬁ)redictions for bifurcation loads are lower than those obtained
in axisymmetric conditions for the problems of tension and comyith flow theory. The difference between the results of the two
pression. Hutchinson and Mil¢g] examined necking bifurcation theories increase with increasing plastification. The levels of ex-
of cylinders under tension for an incompressible material witherimental peak stresses are below deformation theory predictions
transverse anisotropy. Miles and Nuwayhi8] extended the for bifurcation loads, with an average overestimation by the latter
analysis to include compressibility. Axisymmetric bifurcations irbf about 9.6 percent for Castlegate sandstone and about 3.6 per-
frictional materials were studied by Drescher and VardoulgKis  cent for the Jurassic shale. It would appear from that comparison
Vardoulakis[5], and Chau[6] for various constitutive models. that the Drucker-Prager deformation theory can provide reliable
The Cam-Clay model has been employed in a recent bifurcatipredictions in the analysis of the triaxial calibration test for pres-
analysis by Yatomi and Shifi7]. Sulem and Vardoulaki$8] sure sensitive solids.

analyzed axisymmetric bifurcations for a polar material with

Cosserat microstructure. ChdQ] considered nonaxisymmetric2 Problem Formulation

blfurcayons of cylln_drlcal specimen al_ong with afurthe_r exte_nsmn_ A circular cylinder (O<r<a,0<z<l), is uniformly stressed by
[10] to include all higher circumferential modes. Despite an intens, tarnal compressive loads which induce the primary state of
sive research effort in recent yeasssential studies have bee tress

reviewed by Vardoulakis and Sulghl]), the exact details of the

near failure behavior are not fully understood. Particularly, the T =0g=—P O,=—0 1)

onset of bifurcation modes and possible emergence of shear ba\;\\,ﬂﬁ both p, o being positive. Herer(6,z) denote an instanta-

in the vicinity of peak stress, experimentally observed, pose majoi, o Eylerian polar system of coordinates. The original, unde-

challenge_s for_furth_er StUdY' While only diffus_e mode l:)ifu"C""tio"'&rmed dimensions of the cylinder aray!,) and an axially sym-
are examined in this work it is worth mentioning that shear banteyric strain pattern is assumed over the entire loading history.

ing can also be considered as a form of bifurcation from the pri- \y/a examine possible modes of bifurcation, along the primary

mary state of stress. o _ path(1), described by the separation of variables solut{dr])
The present paper, which is a sequel to Papanastasiou and

Durban[12], focuses on one aspect of that calibration test: the
reliability of bifurcation predictions obtained with available mate-
rial models. We examine a circular cylinder strained axially—
symmetrically by an all round pressure and then compressed axi- _ . kwz
ally up to bifurcation. Material response is modeled by the large v=V(r)sinmg cosl— ®)
strain flow and deformation theories of the Drucker-Prager type K
[12]. B  kwz

The governing equations are presented in the next section along w=W(r)cosm¢ sin—— “)

I
with a separation of variables representation of possible e'gevvﬁere @,0.w) are the ¢,6,2) components of the perturbed ve-

modes. The system of ordinary differential equations for the radi%city field, (m, k) are the corresponding wave numbers, and the
radial profilesU,V,W are as yet unknown.

1 . . . .
To whom correspondence should be addressed. Material behavior is modeled by two particular cases of the
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF

kmz
u=U(r)cosmé cosl— 2)

MECHANICAL ENGINEERS for publication in the ASME OURNAL OF APPLIED family
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Y
March 9, 1999; final revision, January 31, 2000. Associate Technical Editor: K. T. o=L--D (5)

Ramesh. Discussion on the paper should be addressed to the Technical Editor, Pro-

fessor Lewis T. Wheeler, Department of Mechanical Engineering, University of v .
Houston, Houston, TX 77204-4792, and will be accepted until four months afterfinwhere"' is the Jaumann stress rate of the Cauchy sti@ss,the

publication of the paper itself in the ASMEPURNAL OF APPLIED MECHANICS. Eulerian strain rate, and denotes the fourth-order tensor of in-
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stantaneous moduli. Here we employ the large strain flow and (1-G4/GyK 2
deformation Drucker-Prager theories, with the effective strgss Ng= — —5Gg
and plastic potentiad defined by 1+(Ga/G)(KIKg=1) = (GuK)/(GKg) 3
0e=Q+ uoy ¢=Q+ noy, (6) (4GB)[1+(Gy/G)(KIKg—1)— (GygK)/(GeKy)]
Fdz
whereQ=(3/2S: - §) is the Mises effective stress withdenoting 1+(Gq/G)(K/Kg—1)
the stress deviatory, is the hydrostatic stress aiid,7) are pres- (15)

sure sensitive parameters. The standard Mises model is obtai
with = n=0, while for associated solids in generaF . A

complete derivation of the instantaneous moduli tersdor both
; ) ) > 1 1 1| d(oe€y) 0eep
flow and deformation theories which originate frd6), has been —=— —|——
given in Papanastasiou and Durbd®?] and here we shall just Ga G ¢/ do ¢
recapitulate the essential relations that correspond to the(figld
Thus, with due account of material symmetry we have the scalar 1 1 (ﬁ) d(oeep) ” Te€p (16)
specification of(5) as Kg K ¢/ dog ¢*
(VT” =L, Ay +L,ydpy+L,y0,, Also in (13), the prir]cipal stretg:hes in direct.io(ls z) are denoted
. by (a, ,a,), respectively, and in analogy wiit12)
T99= Lol + L dgytLy,d,, 3S;,  ugK 3S,  pgK _
v Mi:ﬁ—i_f Ni=5+g i=r,0,z no sum
Oz~ Lzrdrr+Lzrd6€+ L,d,, s s
a7
v v v
019=2Gydry 04,=2G g, Ay, 0, =2Gyd,  (7)  where
whered;; (i,j=r,6,z) are the Eulerian strain rate components. _
The instantaneous moduli;, G;; (i,j=r,6,z) are defined by = (3/7) Ga(1/Kq— 1K)
1+(Gy/G)(K/IKyg—1)—(G4K)/(GKy)
L,=2G+A—TN;M, Ly=L,—2G L,=A—TN;M,
1-G4/G
Ly=A—T\N,M,  L,,=2G+A-T\N,M, G,,=G,,=G ne= 7(1-G4/G) . a8
®) 1+(Gy/G)(K/Ky— 1)~ (GgK)/(GKg)
where G,\) are the Lame constants, aiid is the flow theory  Clearly, the instantaneous modul?) are load dependent,
plastic parameter though spatially homogeneous, and vary wiih«) along the
4(G-Gyl3 deformation path according to the hardenisgftening response
= ¢ 9) €p(0¢). It is worth mentioning that the instantaneous moduli in
1+(K/Ki—=1)G,/G (8) and(13) admit the identity 2, ,=L,, —L,, thus implying that
with (G, ,K,) denoting the tangent shear and bulk moduli, respefelations(7) resemble the stress-strain relations for transversely
tively, defined as Isotropic elastic solid¢[14]). It is worth to observe if the degree

of strain-induced anisotropy inherent to deformation the¢tg),
de, is sufficient to predict bifurcations at realistic load levels for the
G._ G + ¢ ¢ | do, (10)  triaxial validation test. Supporting the use of a noncoaxial plastic-
t e . o .
) ) ] ) ity model for such predictions, Vardoulaki§] claimed that the
K being the elastic bulk modulus, and the effective stigss @ shear modulus for the difference of radial and hoop stress incre-
known function of the total plastic straig, . The plastic strainis ment L,, —L,,=2G should be significantly different than the
defined by the principle of plastic power equivalerEs]) modulus G,,) for the shear stress increment. Apparently such a
o= g &P 11) condition can be met for deformation theory in the plastic region
pre TuE e where the dependent on the stretches instantaneous mdelylus
Also, in (8) in (13)., reduces significantly.
Inserting now the perturbed velocity fiel@)—(4) in the rate

1 1 o dep 1_1+ e
KtiK mn

do,

Mi=ﬁ+ ﬂ Ni=ﬁ+ ’7_K i=r.0.z no sum €auilibrium _equations([lZ]),_and a_ccounting fol7), gives the
2Q  2G 2Q 2G three equations, for the radial profilesV,W,
(12)
o u’ U [km\? 1
whereS;; are the normal deviatoric stress components. Ll U+ —| = (L +m2G, ) 5—|—| |Gp—=(p—0)|U
Likewise, the deformation theory relations are givenBywith " r " r [ 22
Ly =2Gs+Ng—T'4N,M L,y=L,—2G A VvV  [kw
rr s d d'Nr iy re rr s +m(Lr0+Gr9) T_m(er+Gr0)r_2+ I_)
L,=Ng—T4N;M,
1
Lz =Ag—TgN M, L;;=2Gst+Ng—T'gN M, Grt?:((iss) X| Lyt Gy~ E(p-o’) W'=0 (29)
a’+a’ a, U’ U v’
G0Z:GZY: 2_ 7|n_ GS _m(Lr9+Gr9)__m(er+Gr9)_2+Gr(9 V”+_2
ar—a; a, r r r
whereG; is the secant shear modulus 5 V k)2 1
1 B 1 N 3U'e5p ) —(Gyptm er)r_z_(l_) [Gez+§(p_0) \
Gs G ¢Q° I 1 w 0 20
(\q.I'y) are the deformation theory parameters M )| Lot Grem 5 (P o) |5 = (20)
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k7 1 U vV To find the remaining solutions we assume thlaandV are
- (I_) L, +Gy,+ E(pﬂr) (U’+ T+m?) derived from a potential functioR,(r) by
F
1 kar)? —F! = —m—
+| Gy 5 (p0) .cm<W>—(|—”) LW=0 (21) VTR VEmmT (30)
where the prime denotes differentiation with respectrtand Which may be compared 1@4). Substituting(30) in (19)—(20) we
L(+) is the Bessel operator find that both equations are reduced to the common form
() () kar\? k
Lo()=(-)"+ e mzr—z_ (22) arLn(Fo)— T BoF,+ T W=0 (31)
These equations are supplemented by the conditions of vanishinigere
traction rates, at=a, which take here the form
L Gaz+(p_0')/2
U Vv k’TT ap= 2= .
L U +Ly—+mLy—+|—|LsKW=0 Lozt Gy~ (p—0)/2 Lo +Go—(p—0)/2
r r | (32)
u \ Similarly, Eg.(21) becomes
MG ) GV~ (Crtp) =0 (23) o EGED
kar ka2
K 1 1 T a1 Ln(F2)+ B1Lm(W) — I W=0 (33)
_(T)[Gez'i' §(p+0') U+| Gy~ E(D—U) W' =0.
where

At the facesz=0, we have by(2)—(4) that the axial velocity
and the shear traction rates vani§h2]). _Lut Gyt (p—0)f2

Thus, the problem lies in solving the eigensyst&lf)—(21) o L,, (34)
along with the boundary dai@3). Axially symmetric modes are L ) ) .
recovered from the general solution with=0 andV=0. SubstitutingW from (31) in (33) results in the equation

. . . ka2 2
3 Continuous Eigenfunctions £m+(|—ﬂ) Yall Lm+ T ¥5|F»,=0 (35)

Equations(19)—(21) resemble, for any loading statp,), the
analogous equations for transversely isotropic cylindrical tubaﬂ1erey§,y§ are the roots of the characteristic equation
([14]). Accordingly, available analytical solutiorie.g.,[15]) can 4 5
be adapted, as in Chd#], to facilitate a closed-form solution of a1y +(B1fotar—ay)y + =0 (36)
the governing equations. For the sake of completeness, howe\ﬁ%{mely
we summarize here the essential details of a solution method.

Motivated by the Bessel-like structure of Eq49)—(21) we [ 2]

+ay—a{* +a,—ay)’—4
seek solutions of the form Y2 _Blﬂz a,— ag{ }\/(31/32 a,—ay) azﬁlﬁz_

7’% 2,8,
Fa ' (37)
U=m—  V=-F] (24)
r The solution of(35) can be written as
whereF, is an unknown function of.

Inserting(24) in (19)—(21), respectively, we get the equations FzzAsz( kWYzTr) +BzYm( kﬂyzl—r) +A33m( kW73|_r)

ka2 ) Kk
m Em(Fl)—(I—) YiF1 —)aorW’=O (25)

+ I r
+ B3Ym( k7'r‘y3|—) (38)
k) ? Kk W
Ln(F1)— (I_) yiFi+m I_) ag =0 (26)  whereJ,,,Y, are the ordinary Bessel functions afg,A;,B,,B;
are integration constants. The velocitids V follow from (30)
k) ? while the axial velocity profileVN is obtained from(31) as
BiLw(W)—| 5| W=0 (27)
r r
where W= (azﬁ’g"‘ﬁz){Asz( kﬂ'?’zl— + BZYm( kﬂ'?’z'—) +(azy}
, Got(p—0)2 Lyt Gy (p—0)/2 r r
Y1i= G, apg= Gy + B2) A3Jm( k71'73|— +BgYm( k7'r'y3|—) . (39)
Bl:Gez—(p—U)/Z (28) Thus, the complete solution of EqL9)—(21) is the linear com-

LZZ

Clearly, Egs.(25)—(26) are compatible only if (W')’ =m?W/r
implying that£,,(W)=0 and hence, by27), W=0. The solution
for F4 from (25) is then simply

bination ofU andV, derived from(29) and(38), with W given by
the general solution witm=0 andA;=B;=0.

While the complete solution of the governing syst&if)—(21)
is applicable for a uniformly stress€d) hollow cylinder, only

+B. K

r r
Fi=Aql m( Kmyry k7T71|—> =0 (29) need to consider the restricted version2®) and(38)—(39) with

wherel ,,K,, are the modified Bessel functions of ordarand Bessel functionskK,, andY,,, along the axis =0. It follows that

(39). Axially symmetric modes of bifurcation are recovered from

full cylinders bifurcations are addressed in this study. Thus, we

B,=B,=B3=0 in order to avoid the unbounded values of the

A1,B; are the integration constants. The radial proflleandV  the complete solution of continuous bifurcations for a full cylinder

follow now at once from(24). reads
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m r r r 2
U = AlT I m( kﬂ’yll—) + AZ‘JI”H( k’7T’)/2|—) + A3J[’n( k’7T’)/3I—) 15 —_— g:goMl\ﬁSa X bt "
AN Bl =, o Ifurcation
(40) " paompa| 4 [
1 T
, r m r m r yield
V:_Allm k’ﬂ"}/ll— _AzTJm k7T’y2|— _A3TJm k7T'}/3|_ 0.5t v
(41) Y ! ellipticity limit 1A

imaginary (v)
=]

r
W=Az(a27§+ﬁz)3m( ks

.
+Az(ayh+ ﬁz)-]m( kWY3T> .
(42) -1 yield

Compliance with the boundary dat23), over the outer surface 15l #bifurcation
r=a, leads to three linear algebraic homogeneous equations for ’
the integration constants; ,A,,A;. A nontrivial solution(bifur- 2 . . . .
cation is possible for discrete pairp(c) at which the determi- 0 02 04 realty) 06 0.8 1

nant of that system vanishes. The smallest value of bifurcation
loads (eigenvaluesis determined via a search procedure for thgig_ 1 Variation of characteristic roots 5, ¥5 with axial stress
minimizing values of wave numbém, k). o for different levels of confining pressure p. Results are for
The diffuse bifurcation modes discussed here are expectedCastlegate sandstone and with deformation theory. The roots
develop, for common geomaterials, in the elliptic range of gow.,¥s are complex conjugates from initial yield onwards up to
erning equations. An available regime classificafibd,11] states, the ellipticity limit where the equations become hyperbolic.
with the present notation, that the various regimes are
(&) elliptic imaginary when

(B1Ba+ = a1)?—4a,818,>0, a,B818,>0,

B1Bat+ az—a;>0
(b) elliptic complex when
(B1Bo+ ar— 1) —4asB182<0, a»B1B8,>0 4 Calculation of Bifurcation Loads

Sample calculation have been performed for Castlegate sand-
stone(43) over a range of confining pressures. The transcendental

Il
— = Ye@2e (44)
a ap

with €, being a known function of the effective stress.

(c) hyperbolic when

(B1Bo+ ar—aq)2—4ayB18,>0, a,B18,>0, equation resulting from the boundary dg#D)—(42) has been
solved numerically to trace the lowest eigenvalue for applied axial
BiBataz—a;<0 stresso. Typical results are shown in Fig. 2 with zero confining

pressure, different circumferential wave numbexsand upon re-
garding the normalized axial wave numbera/l as a continuous
a,B182<0. variable. All results in Fig. 2 are for the deformation theory model
] ) and broadly resemble those of CHdi0] albeit his assumption of
The first calculations were performed for Castlegate sandstogigess independent moduli ratio. As expect&dy. 2), tapered
characterized by(6) with u=7%=1.311, elastic constant& gspecimen with small values @/, will bifurcate with the buck-
=8.1GPa and'=0.35, and plastic response function ling mode = 1) while the axially symmetric moder(=0) be-
_y)n comes dominant at a specific valuekafa/l (Fig. 2). Notice also
Kloe=Y)%  0e=Y (43) " the ellipticity limit (e.1) in Fig. 2 which indicates here the elliptic/
with K=1.3-10  [MPa]'", n=3.547, andY=14.08 MPa. We hyperbolic boundary beyond which the emergence of shear bands
emphasize here that although the presented flow and deformati@gomes possible.
theory models were derived for the general cases of nonassociated
Drucker-Prager solids, in this particular example we assumed as-
sociative behavioru= 7, because the Castlegate sandstone ex- 150
hibited pronounced dilatiofeven higher than the friction angle at
low confining pressurgsin the triaxial tests; the experimental
stress-strain and volumetric strain curves can be found in Papa-
nastasiou and Durbdri 6].
Figure 1 displays the variation of the deformation theory char- 1001

(d) parabolic when

Ep=

acteristics roots ¢,,v3), as evaluated froni37), with increasing K

axial pressurer and with different levels of confining pressyse =

The characteristic roog, is looping and then moving to the right

whereasy; is looping and moving to the left along theaxis. It is ° —o  m=0
apparent from Fig. 1 that in the practical range of interest the field 501 —— m=1
equations are elliptic complex withyg, y3) being complex con- — m=2
jugates. Similar observations have been verified for other types of —— m=3
common geomaterials. Accordingly, we proceed in this study with —— m=5
investigating the diffuse modes of bifurcati¢®)—(4) within the --- el

. . . G 1 L "
elliptic regime. 0 2 4 6 8 10

Notice that the eigenvalue equation has roots which depend kma
continuously on the parametérra/l. Here, the ratioa/l may rig 5 | owest bifurcation stresses for Castlegate sandstone
depend on loading history and current state of stress at the ong@i zero confining pressure  (p=0) under axial compression
of bifurcation. Just to give an example, it can be shg®8] that ¢ Results are with deformation theory and the ellipticity limit
with the deformation theory, in the deep plastic range, (e.l.) is indicated by a broken line.
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Fig. 5 Effective plastic strain at bifurcation. Data as in Fig. 4.

Table 1 Comparison of flow and deformation theories predic-
tions with triaxial compression tests on Castlegate sandstone
(results in MPa )

Experiment Deformation Theory Flow Theory
Confining  Peak Ellipticity Ellipticity
pressure stress Bifurcation  limit Bifurcation limit

5 52.85 77.80 132.30 218.1 6005
10 73.84 96.60 148.80 200.9 6010
20 114.56 120.80 181.80 170.9 6020
25 123.46 135.80 198.40 165.0 6025
30 138.31 151.10 214.90 168.3 6030
35 145.82 166.50 231.50 177.4 6035
40 159.43 182.00 248.10 189.2 6040

Table 2 Comparison of flow and deformation theories predic-

tions with triaxial compression tests on Jurassic shale (results
in MPa)
Experiment Deformation Theory Flow Theory
Confining Ellipticity Ellipticity
pressure Peak stress Bifurcation limit Bifurcation limit
5 32.05 69.60 166.7 78.6 2741
25 89.10 95.20 202.4 98.7 2760
40 116.50 117.00 229.1 118.9 2775
60 164.00 148.50 264.9 148.9 2796

Figs. 2 and 3 but with a confining pressurepef 20 MPa. Higher
axial stress levels were required to initiate bifurcatidfig. 4)
though the corresponding effective plastic straiRig. 5 do not
differ much from those at pure axial compressigig. 3). Con-
vergence difficulties have been encountered for modes wmith
>2 at intermediate values of paramekera/l.

Representative calculations have been performed for nonasso-
ciated solids, withn# « in (6), but no substantial sensitivity was
found within the range of parameters considered here. Flow
theory predictions for bifurcation loads are consistently higher
than those obtained with deformation theory—a comparison is to
be provided below in the context of assessing experimental re-
sults.

Ideally, the theoretical predictions should be compared with the
load level at the onset of bifurcation in the triaxial experiments. It
is also known that in the triaxial tests bifurcation takes place in the
near post-peak regime. Therefore, the easily detected peak stress
in the experiments provides a lower bound to the bifurcation loads
and it will be used next as a base for comparison. Table 1 shows
values of peak stressése., maximum value ofr) measured in
the triaxial compression tests over a range of confining pressures
of 5 to 40 MPa. The experiments were performed on specimens
with original, undeformed, length to radius ratiolgfap,=4. The
corresponding bifurcation points are indicated in Fig. 1. Also
shown in Table 1 are numerical results for bifurcation stresses and
failure of ellipticity, as obtained from the present analysis, for
both deformation and flow theories. Similar results are given in
Table 2, with specimens of the same geometrical ratib,6é,
=4, for Jurrasic shale characterized by elastic paramdters
=3.7GPa,»=0.35 and plastic response function given (&g)
with K=1.605 10~ 5[ MP&a]'", n=2.857 andY=11.76 MPa, and
u=7n=0.648. The calibration data for the Jurrasic shale sup-

The bifurcation data of Fig. 2 is reproduced in Fig. 3 for criticaported an associated behavior, mainly due to the low value of its
values of the effective plastic straig,. The gap between the internal friction. All bifurcation modes in Tables 1 and 2 are for
various circumferential eigenmodes in now wider, in comparisamave numbersn= 1, k=1, associated with buckling.
with Fig. 2, and the practical significance of eigenmodes associ-Judging from the data presented in Tables 1 and 2 it may be
ated with circumferential wave numbears=1 andm=0 is more concluded that deformation theory predicts bifurcation loads that

apparent.

are below flow theory results but above experimental peak

Figures 4 and 5 present bifurcation results analogous to thosestiessegexcept for the shale peak stresgat 60 MPa. The dif-
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test is given by [2] Hutchinson, J. W., and Miles, J. P., 1974, “Bifurcation Analysis of the Onset
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Three-Dimensional Analytical
iV L Solution for Hybrid Multilayered

Mem. ASME P- I = PI
- ceara | F1€Z0e€lectric Plates
Clifton C. Garvin Professor, ) ) ) . ) . ) )
Fellow ASME Analytical solutions for the static three-dimensional deformations of multilayered piezo-
electric rectangular plates are obtained by using the Eshelby-Stroh formalism. The lami-
Department of Engineering Science nated plate consists of homogeneous elastic or piezoelectric laminae of arbitrary thick-
and Mechanics, nesses. The equations of static, linear, piezoelectricity are exactly satisfied at every point
Virginia Polytechnic Institute in the body. The analytical solution is in terms of an infinite series; the continuity condi-
and State University, tions at the interfaces and boundary conditions at the edges are used to determine the
Blacksburg, VA 24061-0219 coefficients. The formulation admits different boundary conditions at the edges and is

applicable to thick and thin laminated plates. Results are presented for thick piezoelectric
plates with two opposite edges simply supported and the other two subjected to various
boundary conditions.S0021-8936)0)01803-1

1 Introduction proved plate theorieq[22]) and finite element formulations
0,23). However, simply supported boundary conditions are

In recent years, piezoelectric materials have been |ntegra{é s frequently realized in practice and they do not exhibit the

W.ith structu_ral systems to form a class of "S’.“a“ structures.” Th\?/ell-known singular effects observed near clamped or traction-
piezoelectric materials are capable of altering the structure’s | ee edges. The available analytical solution techniques for three-
sponse through sensing, actuation and control. By Integratiff e nsional deformations are incapable of analyzing laminates

surface-bonded and embedded actuators into structural systejy) clamped or traction-free edges and/or when the edges are
desired localized strains may be induced by applying the appr@éctrically in contact with a low-permittivity medium like air,

priate voltage to the actuators. . . . Yvherein the normal component of the electrical displacement
In order to successfully incorporate piezoelectric actuators inta biches

structures, the mechanical interaction between the actuators an
the base structure must be fully understood. Mechanical modﬁ[§n
were developed by Crawley and de LU, Im and Atluri [2],

he Eshelby-Stroh formalisnf24—26) provides exact solu-
s to the governing differential equations of anisotropic mate-
rials under generalized plane-strain deformations in terms of arbi-

%rary analytical functions. Vel and Batf27,28 adopted a series
mounted to top and/or bottom surfaces of a beam. [Ugelevel- 5 ytion for the analytic functions to analyze the generalized

oped a theory for laminated plates with distributed piezoelectrifiane sirain deformation of laminated elastic plates subjected to
layers based on the classical lamination theory. Wang and Roggfjirary boundary conditions, and the cylindrical bending of a
[5] applied the classical lamination theory to plates with surfacgyyinated elastic plate with embedded or surface mounted piezo-
bonded or embedded piezoelectric patches. A coupled first-ordelsmic patches. Recently, Vel and Bafe9] generalized the
shear deformation theory for multilaygred piezoelectric plates W% helby-Stroh formalism to study the three-dimensional deforma-
presented by Huang and Wi6]. Mitchell and Reddy's[7] iions of laminated elastic rectangular plates with arbitrary bound-
coupled higher-order theory is based on an equivalent single-laygy; congitions. Here we extend this method to multilayered piezo-
theory for the mechanical displacements and layerwise discretizaactric plates subjected to arbitrary boundary conditions. The
tion of the electric potential. Numerqus finite element studies ha\é‘?jges of each lamina may be subjected to mechanical and electri-
also been conducte@.g., see Robbins and Redf8], Ha et al. 5" houndary conditions different from those on the adjoining
[9], Heyliger et al[10], and Batra and Lianfl1]). laminae. The governing differential equations are solved exactly
Vlasov [12], Pagano[13,14, and Srinivas and Rafl5] ob- 414 various constants in the resulting series solution are deter-
tained three-dimensional analytical solutions for simply SURpined from the boundary conditions at the edges and the continu-
ported, laminated anisotropic elastic plates. Their method h@g conditions at the interfaces. This results in an infinite system of
been extended by Ray et 16] and Heyliger and BrookEL7]t0  gquations in infinitely many unknowns. By retaining a large num-
study the cylindrical bending of laminated piezoelectric platéger of terms in the series solution, the mechanical displacements,
Analytical solutions for the static behavior of a homogeneous sindyresses; electric potential, and electric displacement can be com-
ply supported, piezoelectric rectangular plate was given by Biyted to any desired degree of accuracy. Results are presented for
segna and Macefil8] and Lee and Jianfl9]. Heyliger[20,21] hick piezoelectric plates with two edges simply supported and the
provided a three-dimensional solution for the static behavior gkher two edges subjected to arbitrary boundary conditions. These

multilayered piezoelectric rectangular plates. All the aforemeRagyits can be used to assess the accuracy of different plate theo-
tioned three-dimensional solutions are restricted to piezoelectfigs and finite element formulations.

laminates whose edges are simply supported and electrically
grounded. Such solutions are useful for validating new or im-

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME QURNAL OF APPLIED i
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, June2 Formulation of the Problem
2, 1999; final revision, Nov. 23, 1999. Associate Technical Editor: I. M. Daniels. \\e use a rectangu|ar Cartesian coordinate System‘ shown in

Discussion on the paper should be addressed to the Technical Editor, Profe! ; Fafii R i ; ;
Lewis T. Wheeler, Department of Mechanical Engineering, University of Houstosﬁﬁ' 1, to describe the infinitesimal quasi-static deformations of an

Houston, TX 77204-4792, and will be accepted until four months after final publrﬁl'layer piezoelectric .laminated plate occupying th.e region
cation of the paper itself in the ASMEDIRNAL OF APPLIED MECHANICS. [O,L1]X[0O,L,]X[0,L3] in the unstressed reference configuration.
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I(S)[ }H(S){ } & on x,=0,
L3=L(];I+]) ¢

L(,}\,) (s=1,2,3, (8)

A 35 & +J(S){ } g® on x.=Lg,

2 where (0g)i=0is. The functions f® g are known and
oo D 15,153,963 are 4<4 diagonal matrices. For most applica-

3 tions, these diagonal matrices have entries either zero or one such

that
Fig. 1 An N-layer laminated piezoelectric plate |(S>+ |(5> 7‘](3)_’_\](5) =l (s=1,2,3, (9)

with | being the 4< 4 identity matrix. For example, if the surface

The vertical positions of the bottom and top surfaces as well as>€x{-0 is rigidly clamped and electrically grounded thEfy) =1,
the N—1 interfaces between the laminae are denotedL§y 153=0andfM(x;,x5)=0, i.e.,u;=u,=u3=0, $=0. If the sur-

=0, |_(2) |_(n) . |_(N) |_(N+1)_|_3 face is rigidly clamped and the normal component of the electric
The equlllbrlum equatlons and charge equations of eIectrostdtsmacement is zero, then I()=diad1,1,1,0, I
ics in the absence of body forces and free charges are =diad0,0,0,]. Boundary conditions at an electrically grounded

— simply supported edgex;=0 may be simulated bylu¢
Timm=0, Dmm=0, (j,m=12.3), (1) =diad0,1,1,1, 1'Y=diad1,0,0,d and fM(x,,x3)=0, i.e., u,

wherea;,, are the components of the Cauchy stress tensoband =u;=0, ¢=0 ando;;=0. The method is valid even when the

the electric displacement. A comma followed by indeindicates gjements of matr|ce$&5(z, 1), SS) and J$) are functions of

partial differentiation with respect to the present positignof a  coordinates only.

material particle, and a repeated index implies summation over therhe nterface conditions on the material surfaces

range of the index. @ LY, LYY may be specified as follows:
The constitutive equations of a linear piezoelectric medium are ")
([30)) (. ) If the surface<3— L3"” is an interface between two laminae,
the mechanical dlsplacements surface tractions, electric potential,
Tim=Cimgreqr—€imErs  Dm=€mqieqrt €mEr s and the normal component of the electric displacement between

(9,r=1,2,3), ) them are taken to be continuous. That is

n
wheree, are the components of the infinitesimal strain tengor, [ul=0[o3]=0, [$]=0,[D3]=0 on x;=Lj (10)
the electric fieldC;,4, the elasticity constants,;,, the piezoelec- Here[u] denotes the jump in the value afacross an interface.
tric moduli, ander,, the electric permittivity. The infinitesimal Thus the adjoining laminae are presumed to be perfectly bonded
strain tensor and electric field are related to the mechanical disgether.

placementi, and electric potentiad by (b) If the surfacex;=L{" is an electroded interface, then the
potential on this surface is a known functié(x,,x,) while the
Sqrzz(uq,r"—ur,q)! Ei=—9¢;. (3) normal component of the electric displacement need not be con-
tinuous across this interface, i.e.,

We will interchangeably use the direct and indicial notation. The - _ _ )
stored energy densitw for a piezoelectric medium is given by [u]=0, [o3]=0, ¢=T(x1,X;) On X3=L5". (11)

([30D We assume that the electrode is of infinitesimal thickness and
1 ignore its influence on the mechanical deformations of the
E(ijqrsjmeqr"— €mEmEr). (4) structure.

The symmetry of the stress and strain tensors and the existence of

thed_s_tored energy function imply the following symmetry3 A sojution of the Governing Differential Equations
conditions:

1
W= E(O'jmsjm+ DnEm) =

We construct a local coordinate systeff? x4 ,x{" with local
Cimar=Cmiqr=Carjm €rjm=Ermj, €mr= €rm- (®)  axes parallel to the global axes and the origin at the point where
In the most general case, there are 21 independent elastic ce- globalxs-axis intersects the bottom surface of thté lamina.
stants, 18 independent piezoelectric moduli, and 6 independ#this local coordinate system, tinth lamina occupies the region
dielectric permittivities. Material elasticities are assumed to yiefd,|,]1x[0,,]x[0]{"], wherel;=L;, l,=L, and I{V=L{"*""
a positive stored energy density for every nonrigid deformation| (" = we drop the superscript for convenience with the un-

and/or nonzero electric field. That is, derstanding that all material constants and variables belong to this
Cimarlli mUqr>0,  €mEmE, >0, g) lamina.
Jmarelmea T Emr=mer © The Eshelby-Stroh formalisiti24—26) provides a solution for
for every real nonzere;, andE,. The total stored energy of the generalized plane-strain deformations of a linear elastic/
the piezoelectric laminate is given by piezoelectric anisotropic material. We extend it to three-
dimensional deformations by assuming that
J de (7) u . kl7T k27T X3
=aexpi|——X;+ —Xo+tp—||, (12)
¢ Iy I I3

whereR=[0L,]X[0L5]X[0,L3]. The displacement or traction
components and electric potential or normal component of tieherea andp are possible complex constants to be determined,
electric displacement on the edges=0, L;; x,=0, L,; and on k; andk, are known integers, and= /= 1. The chosen displace-
the bottom and top surfaces are specified as ment and potential field has a sinusoidal variation onxhe x,
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plane with an arbitrary exponential variation in tkgdirection; IM(Pp)>0, Puia=Pu, 8yis=a, (a=1,....4,
k, andk, determine the period of the sinusoidal terms in xhe (20)
andx,-directions respectively. h b . d tity denotes it |
From Egs.(12), (3), and(2) we obtain where a bar superimposed on a quantity denotes its complex con-
jugate. For distinctp, we can superpose eight solutions of the
. ko ko S form (12) to obtain
Tim=1 (ijqraq+ erjma4) 0 ot T, St p 1.
1 2 3 [u} % Ky Ko x3) _
=A{expi| —X;+ —=——X,+p,~—|| ) ctconjugate,
. kl’7T k27T X3 ¢ Il |2 |3
Xexp i l—x1+ I—x2+p|— , (21)
1 2 3

where A=[a,,a,,83,84], C is an arbitrary &« 1 vector of un-
D= i (€araq— €mrs) I‘1_7T(S I‘2_77 5r3 known complex coefficients,  ((p,))=diad ¥(py),
m mar®q - Smre4 rl (p2),(p3),¥Aps)], and conjugate stands for the complex conju-
gate of the explicitly stated term. We obtain the following expres-
) kl7T k27T X3
xXexpgi | —X+ —Xo+p—]|.
;{ ( I I |3)

sions for the stress tensor and electric displacement by superpos-
ing eight solutions of the forn13),

Here §;; is the Kronecker deltd 30]). Substitution 0f(13) into (1) o kym kK, X3 )
gives equations which can be written as D, =Spl expi TX1+ vxﬁ P*E c+conjugate,
{QC+p[RC+(R%)T]+ p?TC}aC+{q°+ p[re+°] + p2t®a,=0, (22)
where
{(@®)T+pL(r)T+ () 1+ p*(t) T1a"—{q“+ p[r =+ s+ p*tFay
o Sn=[Vimpa1,Vm222:Vm33s,V(madal,
B} vE Ve
where a®=[a;,a,,a5]", the matricesQ®,R®, TC are related to Vima= e(r”'“)T (m.e) }
the elastic constantS; by T W) T U(ma
k272 kiky k372 [ Ky ko ]mq3
Q]% |2 leql T(leq2+C]2q1)+ |2 C|2q21 (me,a))jqzl chmq1+ chmq2 Po , (23)
(15)
ki Ko 1 Ky Ko7 €3jm
C 1 2 Cc_ e I . ]
qu | || Cj3q1+ EC]&}Z; qu—ECj;}qfﬂy (v(m,a))J |( |l ellm+ | ezjm+pa s
the vectorgy®, r¢, s¢, andt® are related to the piezoelectric moduli o kg Ky €mj3
€rjm by (W(m,a))j_l |_emj1+ | em12 Pe7— | )
1
K22 Kqkpm? K32 Kk k
e_ 1T 2T €m3
a;= 2 €1t I, (ejp+ep1) + —2— 12 €2j2, Uima) = T €m1t temﬁ- pat)
o ki kzw o Ko ko7 The expression&1) and(22) are valid when the eigenvalugs
ri :W | B T 32, ST Il €3t Wezja- (16) are distinct, or if they are not, there exist eight independent eig-
st st 32 envectorsa, . If an eigenvalue is repeatedimes (2<r<4) and
o 1 it does not have corresponding independent eigenvectors, then
t =|—29313, (21) and(22) need to be modified appropriately. The procedure is
3

similar to that given for elastic laminates by Vel and B424].
and the scalarg®, r¢, s¢, andt€ are related to the electric permit-

tivity €, by 4 A Series Solution
K22 KoKy 2 k272 The complete double Fourier series expansion constructed to
9 ="z eut o, (€12t €21) + 7~ €22, satisfy the boundary/interface conditions on the surfacgs
1 2 (17)  =0,1{" is obtained by superposing solutions of the fa@d). In
o kqymr ko .k ko 1 the following equations the first superscriptdenotes thenth
r 1. I €t T I, €32, S = . I €13t T~ I, €3, Tz €3 lamina and the second superscript 3 indicates that the series terms

3 have a double Fourier series expansion on the pIa?ﬁésO and

It should be noted that"=r< due to the symmetry restrictid®); | The dependence of the eigenvalues and eigenvectoks on
on the electric permittivity tensor. The two equationg14) can andk, is indicated by the subscripts
be combined as 2 '

(n3)
+p[R+R"]+p?Tla=0, 18 U™ an3 r.(n3 ~nd n3 (3 n3)

. {Q+pl 1+p°T} (18) »"d = Ay ko)l kg ko) Ciky ko) §fk0 ko) Ak ko)]+ E Ak o

where
Q¢ q° R ré TC t® (n3) (N3 | #n3 43 ; n3) . (n3 ~(n3
Q= @ —q¢’ = (€7 —re|’ T= 9T —te|" X[’?(kl 0Cky.0 1 8(ks.0 (k1 olt E A(Okz)[ﬂ<0k2)c<0kz)
19)

Following the method used by Suo et §81] for generalized +E02 dio )]+ 2 {AEE ORI AR
plane deformations of piezoelectric materials, we can prove that : v e
the eigenvaluep of (18) cannot be real. Since the matrid®@sR, LNy (3 +A(” 3 (n.3) n3
andT in (18) are real, there are four pairs of complex conjugate (k1 .kz) <k1 kz>] (k1v*k2)["(k1 —k)Clky,—kp)
values forp. Let (p,,a,) (¢=1,2,...,8) beeigensolutions of 3 (n, .
(18) such that T &kl - 1+ conjugate. (24)
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The terms involvingky € (0,1) play the role of the constant termpeated for the boundary conditidB), on the top surface of the

in the double Fourier series expansion and Nth lamina withs= 3 and the interface continuity conditiofk0)
or (11) between the various laminae.
1,22,31( >(X(1n) X Xy = < ex;{ i (kl_wxgnhr kz_ﬂ'x(zm On the side surfaces” =0, the functions are extended over
1 Iy 2 the interval[ —1,,1,]X[—1{V,1{"] in the x{V—x{" plane. We
L then multiply (8) corresponding tos=1 by exgi(kom/l,
p& ,)kz,*>|(_n>) > +kemxPN§Y)] and integrate the result with respectd® andx{™
(25) over[—l,,1,1x[—1{" 1{"]. A similar procedure is used to sat-
isfy the boundary condition$8) corresponding ts=2 on the
£ O XY g = < eXF{ i (kr—w X"+ klz—w xg" sm?r/facesx(z”) =0, 23./ ® P ’
. 2 Substitution from(26) into (27) and the other equations that
n3 X(3n> enforce the .b(.)u.ndary qonditions on the top surface, the interfape;
+ p(kikaY*)(l(_n) ))D between adjoining laminae and the side surfaces leads to an infi-
3 nite set of linear algebraic equations for the infinitely many un-
The functionsz{f, (<™ & x{) and £07), (VX ,x{Y)  known coefficients:E’k‘f)kz) and d§rk‘if),(2). A general theory for the

vary sinusoidally on the surface§” =0, 1" and exponentially in solution of the resulting infinite system of equations does not ex-

the xg”)-direction. The inequality20), ensures that all functions |st..However, reqsonably accurate results can be obtglned by trun-

decay exponentially towards the interior of théh lamina cating l.(l ano_l K in (24) 10 Ky andK, terms, respecnvel_y. The
Similar expressions can be written g™ ¢("’1)].T and Stnes involving summations ové&g andk; in the expression for

(D 40D M i
. . ) uth, are truncated toK, and K%" while those for
[u™? 42T which have a complete double Fourier series e% ¢ ] 2 3

uh2d pn.2) (n)

. . )_ ) _ . ut™?, ¢'\"9] are truncated t&3” andK, terms. In general, we
pansion on the S'd.e surfacm% 0l a’?dxz O.’|2 respectively. trx to maintain approximately the same period of the largest har-
The mechanical displacement, electric potential, stress, and elec- . . o)
tric displacement fields for theth lamina are monic on all interfaces and boundaries by choosiKg'

. . =Ceil(K.1{"/I;) andK,=Ceil(K,l,/I,), where Ceily) equals

u™] u<”'s>} [ o] s n.s) (26) the smallest integer greater than or equal.t6hus, the size of the
oM & 9|’ DET?) ] Dg:s) : truncated matrix will depend solely on the choicekof.
The unknownscl®, ) and dii:%) ) in (26) are assumed to be 6 Results and Discussion
complex, except focl%) | andd{:%}  which are real. Problems studied by Heyligé20] and Heyliger et al[10] were

analyzed by the present method with= 200, and the two sets of

5 Satisfaction of Boundary and Interface Conditions Lzsnugz gwoantqc;ligdvz\r/)ér\]/v \?J:th?i ;Sown below, satisfactory results
The boundary conditiong) on the surfacegs=0, Ls and con- We present results for laminated plates with each lamina made

tinuity conditions (10) or (11) on the interfacesxs=L$?, of either graphite-epoxy{22]), PVDF ([10,32) or PZT-5A([22])

LY, ... LY are satisfied by the classical Fourier series metholyith nonzero values of material variables listed in Table 1. We

resulting in a system of linear algebraic equations for the utfeat the graphite-epoxy layer as a piezoelectric material with the

- ) (n.s) piezoelectric moduli set equal to zero, and solve for the electric
known coefficientscy; k) and dy;’i, - On the bottom surface field in the graphite-epoxy layer which is uncoupled from the

x§"=0, we extend the component functions (@6) defined on elastic field. In this section we denote the thickness of the lami-
[0J,]X[0],] to the intervall —14,1;]X[—1,,l,]. The functions nate byH(=Lj).

7, and&id ) which have a sinusoidal variation on the plane Although our solution is applicable to laminates with general
Qoundary conditions on all four edges, here we consider laminated

x{P=0 are extended without modification since they form th 8 . .
basis functions for this surface, except for terms involviqag piezoeleciric plates tha.t are simply supportgd and electrically
’ grounded on the opposite edges=0 andL,, i.e.,u;=u3;=0,

i i inil ; .
which are extended as even functions. The functhﬁgkz) and 05,=0, =0, and the other two edges subjected to various
§E,§*11?k2) which have an exponential variation in th§”-direction boundary conditions. The reason for this choice is that if each
and a sinusoidal variation in the-direction are extended as
even functions in the<{V-direction and without modification in . . . .
the xD_direct . (1.2 12 Table 1 Nonvanishing material properties of the graphite-

5 ’-direction. The functlonm(klykz) andggklvkz) are extended epoxy, PVDF, and PZT-5A

. - l) . . . e . .

as even f_unct.lons in the; -dlr_ectlon and_ without modlflgatlorl in Property  0° Graphite-epoxy 0° PVDF  PZT-5A
the x{"-direction. The prescribed functioit®(x{" ,x{V) is suit- T (GPa) 55405 R 99301
ably extended. We multiply(8); corresponding tos=3 by Caz2e(GPa) 11.662 23.60 99.201
expli(k, &9, +k,mEV11,] and integrate the result with respect to Cyaa(GPa) 11.662 1064  86.856
x{ andxtM over the interva[ —1,1,]1X[—1,1,] to obtain Crin(GPa) 4.363 3.98 54.016
1 2 11 2272 Ch133(GPa) 4.363 2.19 50.778
L [y [ u® () Ci233(GPa) 3.018 1.92 50.778
13 1@ 73 _f<3)] Chs23 (GPa) 2.870 2.15 21.100

f|2j|l ut| g M| " oD DEY Ca1s1(GPa) 7.170 440 21.100
5 B Ch212(GPa) 7.170 6.43 22.593

KomxD Komxd ez (Cm2) 0 -0.130 -7.209

Xex%i( L 222 XX =0 at x{P=0, ez (Cm™?) 0 0145 -7.209

l1 P ess3 (Cm~?) 0 0276  15.118

(27) €223 (Cm"") 0 -0.009 12.322

o ens (Cm2) 0 -0.135 12.322

for all  (kq,kp) e ({0} {0hHu (2" x{ohuoyx zH)yu(z* €11(10710 F/m) 153.0 1.1068 153.0
X Z")U(Z*x 27), whereZ" andZ~ denote the sets of positive €22(1071° F/m) 153.0 1.0607 1530
€33(1071° F/m) 153.0 1.0607 150.0

and negative integers, respectively. The same procedure is re-
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Table 2 Convergence study for a [0 deg PVDF/90 deg PVDF] square laminate
subjected to mechanical load, L;/H=5

Ky w(H)  @(HY/2) eu(H) u(H*/2) $(B3H/4)  Dy(H) v
6.803677 0.232611
25 0244744 oo pen 1690089 oo —0221222 2784989 1028037
6.803 253 0.233188
50 —0244314  Soooo 1676082 oooo.e  —0220854 2758772 1.028027
6.803 264 0.232722
100 ~0.244253  oooon. 1681768 ol on.  —0.220854 2.772986 1.028026
6.803 245 0.232879
150 ~0.244243 oo L67818L oo, ~0.220851 2764628 1.028026
. 6.803248 0.233243
200 —0244237  oiao,. 1680697 (Too0y  —0.220850 2770503 1.028025
lamina is made of a monoclinic material of crystal clasqsee 03(X1,%2,0)=[0,0,— /2] sin( X, /L 1)Sin(mX, /L)
[33]), then the boundary conditions at the edges-0.L, are
identically satisfied by the following mechanical displacement and d(xg, X2, H) = d(X1,%2,00=0;
electric potential distributions: (ii) Electrical load:
U=IT0a Xg)sinhmxz [L2). F2(X1,X3) (X1, %2, H) = B(X1,X2,0) = 0.5 Sin(mxy /Ly)sin(mx, /L),
; T
XCOS)\WXZ/Lz),fg(Xl,X3)S|n()\7TX2/L2):| (Tg(Xl,XZ,H):0'3(X1,X2,0):O. (30)
&= T4(Xq,x3)SIN(N XL /L 5). (28) Results for combined mechanical and electrical loads can be
The equilibrium and charge equations will yield coupled partigPtained by superposition of the solutions corresponding to loads
differential equations forf ,(x;,x3), (a=1,...,4). Thus, we () and(i).

need only one term, namel, =X\, in the x,-direction in the  1he effect of truncation of the series on the accuracy of the
double Fourier series expansion and the size of the truncated @lution is investigated for the two-ply laminated plate with two
trix is greatly reduced. PVDF and graphite-epoxy are orthorhor?PPOSite edges simply supported and grounded and the other two
bic materials of crystal class mm2 and PZT-5A is a hexagon@fl9es subjected to FD-FD boundary conditions. Computed results
material of crystal class 6mm, all of which belong to the group dPr various quantities at specific points in the laminate are listed in
monoclinic materials of crystal class m. Table 2 for the case of the mechanical loading. The following

The edgesx;=0,L; may be either clampe¢C) with u;=u, hondimensionalization has been used:

=u3=0, or free of tractior(F) with 1,= 01,=0413=0 or simply Co L, L, Ly Ly
supported(S) with u;=u3=0, o1;=0. We append P when the  [T;(X3),Ts(X3)]= —— ul(—, —,x3),u3(—, —,xs) ,
edge is electrically groundedp=0) or D when the normal com- L1do 472 2°2
ponent of the electric displacement is set to zero, Dg=0. For 1 L, L, L, L,
example, FP-FP denotes a laminated plate that is traction-free anfor,,(x3),515(X3) 1= — 0'11(—, —,x3) ,013(—, —.X3] |
electrically grounded on the edges=0 andL ;. In this notation, %o 2°2 82
all analytical three-dimensional solutions available to dat8— 1 L L, L
21]) are for piezoelectric laminates that have all four edges sub- [T y(Xs),F35(X3)]= — 023( —1,0,x3) ,033(—1, 2 sl
jected to SP boundary conditions. %o 8 2°2

6.1 PVDF Cross-Ply Laminate. Consider a two-ply square F(xg) = 100G, (ﬂ Ly « (31)
laminate with the bottom and top layers made of 0 deg PVDF and 3 Ligo (27273

90 deg PVDF, respectively. The material properties of the 90 deg

PVDF may be inferred from those of the 0 deg PVDF given in 5 B &D (ﬂ Lz
Table 1. Both layers are of equal thickness,/H=5 andL, 3(X) = e S\ 2’2 ’X?’, ’
=1.0 m. The interface is electroded and conditioh%) are en-

forced withf(x41,X,) =0 onx;=H/2. The following two electro- U= U_Co
mechanical loading cases are considered: CqgiLy

(i) Mechanical load: )
where C,=23.60 GPa and,=—0.145Cm? are representative

03(X1,%2,H)=[0,000/2]" sin(mx; /L 1)sin( 71X, /L5) (29) Values of the elastic and piezoelectric moduli for a PVOBEble

Table 3 Convergence study fora [0 deg PVDF/90 deg PVDF] square laminate
subjected to electrical load, L,/H=5

Ko a(H)  as(HY2)  6u(0)  8wu(H*/2) $(B3H/4)  Dy(H) Y

25 0664816 008 ousazns 0S001% gamame —6r2rses 0708785

50 0665182 1000 2440661 D000 0244286 6791965 0.708884
100 0665181 )0 ousamis DSONNY 02u4286 6757052 0708008
150 0665180 0% paumsea D3NS 0500085 6777602 0708013
200 0665201 ol 2asseas JO000Y 0244285 —6763651 0708014
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1). These results show that the mechanical displacenignéd
T, transverse shear stre@s; and electric potentialp converge
rapidly, but the axial stresé,; and transverse componebt of
the electric displacement converge slowly. The upper and lower
values of the transverse displacem&nt and transverse shear
stressa 3 are at corresponding points on the two sides of the
interface between the laminae. As is evident, the interface conti-
nuity conditions are also satisfied very well with increaskg

The difference in the values @f,;(H) and o,5(H*/2) for K,
=150 and 200 is 0.15 percent and 0.16 percent, respectively. The
total stored energy) exhibits monotonic convergence from above
and has converged to four decimal placeskgr=50. Whilekg in

(24) was chosen to be 0.5 for this study, a similar convergence
behavior was observed for other valueskgf Table 3 presents a
convergence study for the case of electric loading wherein the
nondimensional variables are defined as

N N Co L Ly L Ly
[Ul(Xs),Ue,(X3)]:% Uy Z'?’X?’ Uz 7,7%3’
R R Ly Ly L, Ly Ly

[011(X3)1013(X3)]:% ol 5 5 X3 .013 g o X3

R R Ly Ly L L,
[023(X3)10'33(X3)]=% 023 §,0X3 10733 317%3

Fig. 2

— SP-SP B
--- CD-CD "
------ FD-FD K4
0.75} "
X,
..
~_
\N
R e
0SS i
JUtt o '//
025} ¢ /
Y )
\"w N
.............. o .
0 X L= h .
0.4 0.3 0.2 -0.1

Influence of the boundary conditions on the through-
thickness distribution of the potential due to a mechanical load
for the [0 deg PVDF/90 deg PVDF] laminate

100090.5L 0.5L , x,)e,/L,q,

) above. Thus for the combined mechanical and electrical loading,
the total stored energy may not converge monotonically. Results
presented below are fd¢, = 200.

Electric potential is induced in the laminate due to the applica-
tion of the mechanical load. The through-thickness distribution of

) 1 (L, L,

¢(X3):¢TO¢ 55 %)
Da(Xe) = —geDy| =, =2 0= .
00~ 5,04 7 3] 0=

the electric potential at the midspan is shown in Fig. 2 correspond-
ing to three different boundary conditions. The electric potential
distribution within each layer is parabolic and the magnitude de-
pends on the boundary condition at the edge. Figure 3 depicts for
the mechanical and electric loading the through-thickness distri-
bution of the transverse displacement, longitudinal stress, and

Hereeo=1.0607x 10" *°F/m is the typical magnitude of the elec-transverse shear stress for three different sets of boundary condi-
tric permittivity of a PVDF. In this case too, the mechanical distions at the edges,=0,L,. The transverse displacement essen-
placements, electric potential, and transverse shear stress d@ily remains independent of the thickness coordinate for me-
verge faster than the longitudinal stress and transverse compor@ranical loading, as is usually assumed in the theory of laminated
of the electric displacement. The total stored energy for the eleglastic plates. When subjected to an electric load, the top and
trical loading converges monotonically from below, in contrast tbottom surfaces exhibit larger transverse displacement than the
the case of the mechanical loading where the convergence is fraridplane. The longitudinal stregs;, is discontinuous across the

1 T I
: — SP-SP AN
075} CD-CD 5
[ FD-FD :5' Y N
T os) i SRR I S VR
= E . el
i s ~.‘
025]
o L4
3 4 5 6 7 20 -15 -10 5 0 5 10
"3(0'5L| 0.5L,x)Cy/Ligq, 6,,(0.5L,,0.5L,,.x ;)/q,
®)
1
0.75
Em 0.5
=
0.25
0 S
-4 -1 0 -8 6 4 2 0 2 4 -03 0I5 0 015 03
15(0.5L,,0.5L,, % )C, ey 0,(0.5L,,0.5L,.x )L feyd, 0,3(0.25L ,0.5L ,,x,)L feybq
Fig. 3 Influence of the boundary conditions on the through-thickness distribution of the trans-

verse displacement, longitudinal stress, and transverse shear stress for the

[0 deg PVDF/90 deg

PVDF] laminate subjected to (a) mechanical load and (b) electrical load
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Fig. 4 Axial variation on the interface of the [0 deg PVDF/90
deg PVDF] laminate (a) transverse electric displacement for the
mechanical load and (b) transverse shear stress for the electric

load

—_~
S
g

D,(x,0.5L,0.5H)Cylegd,,

0,(x,05L, 0.5H)L e,

14

1.2

of the mechanical loading and is largest when the edges are
clamped. When subjected to the electrical load, the maximum
transverse shear stress occurs on the interface when the edges are
simply supported or traction-free andxat=0.3H when the edges

are clamped.

The axial variation of the induced electric displacement com-
ponentD5 on the 0 deg PVDF side of the interface is shown in
Fig. 4(a) for the mechanical loading. The result is plotted over
--- SD.SD only half the span since it is symmetric about the midspan. When
----- CD-CD the edges are simply supported and grounded, i.e., SP boundary
conditions,D is largest at the midspan and vanishes at the edges
X1=0\L,. In the case of SD and CD boundary conditioBs, is

01 02 0.3 04 0.5 essentially uniform over the middle eight-tenth of the span but

varies from—19 atx; =0 to —1 atx,;=0.1L,. This rapid change

in D3 near the edges has not been investigated in detail. The large
electric displacements could lead to dielectric failure at the edges
when the laminate is subjected to only a moderate mechanical
load. The shear stregs;; on the interface due to an electric load

is antisymmetric about the midspan and is shown in Fig).4A
thorough study of this rapid change in; at the edges except
when they are simply supported and grounded, necessitates the
use of special functions and has not been pursued here. The shear
stress at the edges seems to be singular for SD and CD boundary
conditions and could lead to delamination failure at the edges
even for moderate electrical loads. Such large stresses were also

o1 02 3 07 o observed at the edges of piezoelectric layers by Batra ¢84l.
’ Y ' ’ and Robbins and Reddy].

Figures %a) and(b) show the transverse deflection of the mid-
plane for the case of the mechanical and electrical load, respec-
tively, when two of the edges are clamped or traction-free. The
transverse deflection of a laminate that is simply supported and
electrically grounded on all four edges has the double-sinusoidal
shape of the applied mechanid@9) or the electrical load30),

interface due to the change in material properties between thed is not depicted. This is not true when two of the edges are
laminae. The longitudinal stress is largest in magnitude on tlséamped or traction-free. The transverse deflection at the center of
bottom surface for the mechanical loading and on the 0 deg PVIite plate is largest when two edges are traction-free and smallest
side of the interface for the electrical loading. The maximumwhen they are clamped. The transverse deflection near the
transverse shear stresg; occurs at about;=0.3H for the case clamped edges is opposite in direction to that at the center of a
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Fig. 5 Influence of the boundary conditions on the midplane transverse dis-
placement of the [0 deg PVDF/90 deg PVDF] laminate for (a) mechanical load and
(b) electrical load
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1 Table 4 Mechanical displacement, stresses, electric potential,
and electric displacement at specific locations of a square [0
x /L, =005 deg PVDF/90 deg PVDF] laminate for various boundary condi-
ors| T i’/,i‘:gés tions, L,/H=5
i Variable SP-SP CD-CD FD-FD (CD,FD)-(CD,FD)
iy (H) -0.785 -0.406 -0.244 -0.617
ug(H/2) 4.360 3.298 6.803 3.676
gu(H) 3.770 2.361 1.681 3.080
F13(H/2)  0.766 0.902 0.233 0.600
Fu(H/2) 0317 0.186 0.908 0.239
Fss(H/2)  0.000 0.051 -0.089 0.057
P(H/4) -0.293 -0.177 -0.365 -0.205
Ds(0) -3.432 -3.147 -4.157 -3.247
. @ (H) 0.676 0.382 0.665 0.620
0.25 05 z}a(H/Z) -1.357 -0.664 -1.541 -1.046
6. (x 05L, x)Li/e-d &11(0) 2.642 -0.017 2.454 0.738
BT 0o G13(H/2) 0.321 0.042 0.361 0.376
. . - Ga3(H /2 0.133 2 . .
Fig. 6 Through-thickness variation of the transverse shear ngHkg 0.000 8033 _%g)i _%B%i
stress on three sections of a [0 deg PVDF/90 deg PVDF] lami- 3(3H/4) 0'244 0'244 0'244 0'244
nate with layerwise variation of boundary conditions Dy(H) 6770 6758 6764 6762
3 -0, -0. -0. -6.

CD-CD laminate when subjected to the electric load.

nae. As an example, consider the configuration denote(Cby

6.2 Graphite-Epoxy and PZT-5A Hybrid Laminate.

The present method can also analyze laminated plates when dihsider a three-ply square laminate with the bottom and middle
edges of each lamina are subjected to boundary conditions diffefyers made of graphite-epoxy with fibers parallel toxh@ndx,
ent from those on the corresponding edge of the adjoining langiirections, respectively, and the topmost layer made of PZT-5A,

i.e., [0 deg GE/90 deg GE/PZT-§AThe graphite-epoxy layers

FD)-(C_ID,FD) wherein the bottom lamina of the two-plylaminatedare of thickness OHM, the PZT-5A layer is of thickness 02
plate is clamped at; =0 andL, and the corresponding edges ofi ; /H=5 andL,;=1.0 m. Interface condition&L0) are assumed

the top lamina are traction-free with the normal component of thgstween the graphite-epoxy laminae. The interface between the
electric displacement set equal to zero for both laminae. FigureP@T-5A and its neighboring graphite-epoxy lamina is electroded

depicts the through-thickness distribution of the transverse sheaid grounded. The bottom surface of the laminate is traction-free
stresso;3 on three sections when the laminate is subjected to th@ad the following two electromechanical loadings are considered
electric load. As we approach the edge, the point of the maximu@y the top surface:

transverse shear stress in the 0 deg PVDF lamina shifts closer to
the interface and it is accompanied by large gradients. Numerical
results at specific points in the laminate for four sets of boundary

conditions given in Table 4 can be used to compare predictiofis)
from various plate theories and finite element solutions.

Mechanical  load: o5(X;,X,,H)=[0,000]" sin(mx, /L,)
XSin(WXZ/Lz),¢(X1,X2,H):O,

Electrical load: ¢(Xq,X5,H) = ¢ Sin(mx, /L) Xsin(mX, /L),
(T3(X1,X2,H):O.

.....
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Fig. 7 Influence of the boundary conditions on the through-thickness distribution of the

stresses for the [0 deg GE/90 deg GE/PZT-5A] laminate, (a) mechanical load and (b) electrical
load
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(a) Table 5 Mechanical displacement, stresses, electric potential,

and electric displacement at specific locations of a square [0
deg GE/90 deg GE/PZT-5A] laminate for various boundary con-
o — SeeP ditions, L;/H=5
R --- CD-CD '
a0 FD-FD | Variable SP-SP CD-CD FD-FD
= | @ (H) -1.933 71,082 0.322
= i3(H/2) 14.325 10.851 35.728
A \ Fu(H) 9.329 6.652 6.991
= % 513(08H) 0972 1.056 0.388
e Lr ! 3(0.8H)  0.384 0.096 1.216
Yool F33(H/2) 0.419 0.462 0.356
R S $(0.9H) -3.668 -3.020 -5.117
e o Dy(H) 21.563 13.301 29.818
0L - s il i (H) 10.161 4.774 10.326
0 0.1 02 L 0.3 04 0.5 43(H/2) -25.862 -14.205 -36.201
il - 61(0) 15.517 11.115 12.631
® , , , 615(0.8H)  1.042 0.057 1.389
65(0.8H) 0836 2.184 1.419
6:(H/2)  -0.119 -0.012 -0.112
#(0.9H) 0.505 0.502 0.506
< Dy(H) -9.878 -9.440 -10.000
X
5
3
<,
ﬁN
< b coefficients. By keeping a large number of terms in the series
% 2k solution, the mechanical displacements, stresses, electric potential,
© i and electric displacement can be computed to any desired degree
R of accuracy.

We have computed results for a two-giy deg PVDF/90 deg
PVDF] laminate and a three pif0 deg GE/90 deg GE/PZT-5A
hybrid laminate that is simply supported and electrically grounded
Fig. 8 Axial variation of the transverse shear stress on the on two opposite edges and subjected to various mechanical and
midsurface of the PZT-5A lamina of the [0 deg GE/90 deg GE/  electrical boundary conditions at the remaining two edges. The
PZT-5A] laminate for (a) mechanical load and (b) electrical load effect of either mechanically clamping the edges, simply support-

ing them or leaving them traction free and prescribing either the
electric potential or the normal component of the electric displace-

The nondimensionalization&31) and (32) are used withC, ment to vanish, has been delineated. It is observed that the solu-
=99.201 GPa and,= — 7.209 Cn% they are representative val- tion, valid for thick plates, exhibits sharp variations near the edges
ues of the elastic and piezoelectric moduli of a PZT-5A. Figuréxcept when they are simply supported and electrically grounded.
7(a) depicts the through-thickness distribution of stresses for thelt is found that for the two-ply laminate, the total stored energy
mechanical loading. The longitudinal stress is approximatefpnverges monotonically from above for the mechanical loading
piecewise affine. The transverse shear stregsis larger when and from below for the electric loading. When the normal com-
the edges are clamped than when they are simply supportedpenent of the electric displacement is prescribed to be zero at the
traction-free. The shear stress; attains the maximum value in edges, the longitudinal distribution of the component of the elec-
the 90 deg GE lamina and is largest when the edges are tractitfit displacement in the thickness direction exhibits, near the
free. The corresponding through-thickness variation of the stressglges, rapid variations in a region of width D.&herelL equals
for the electric loading is shown in Fig.(ly). The longitudinal the span of the square plate. However, the width of such a layer
stressor;; on the PZT-5A side of the interface is larger than that @&quals 0.0R for the longitudinal distribution of the transverse
other points. The maximum value of the transverse shear stréb¢ar stress. For a sinusoidal loading on the top surface, the de-
013 is at the interface between the PZT and the substrate figcted shape of the midsurface is sinusoidal only when all four
simply supported and traction-free boundary conditions and ogdges are simply supported. When the two opposite edges of the
curs in the 0 deg GE lamina for the clamped boundary conditionpper PZT layer are free but that of the lower one are clamped,
The maximum value of the transverse shear steessis at the Mmost severe deformations occur at points on the interface where
interface between the PZT and the substrate for all three boundtg free edge meets it.
conditions. Figures @) and (b) show the axial variation of the For the three-ply hybrid laminate, the axial variation of the
transverse shear strasg; on the mid-surface of the PZT-5A layer transverse shear stress on the midsurface of the PZT layer exhibits
for three different boundary conditions. They exhibit rapid variesharp variations in a region of width @.Inear the clamped and
tions at the edges except when the edges are simply supported #aetion free edges. The maximum value of the transverse shear
electrically grounded. Further results at specific points are givéiress occurs at a point on the interface between the PZT and the
in Table 5 for the three sets of boundary conditions. substrate when the edges are either simply supported or traction-

free but at a point within the 0 deg graphite-epoxy lamina when
. the edges are clamped. The tabulated results presented herein
7 Conclusions should help establish the validity of various approximate theories.

We have extended the Eshelby-Stroh formalism to study tikénally we note that edge singularities, if any, have not been de-
three-dimensional deformations of thick piezoelectric laminatdieated by using special functions. The present technique seems
subjected to arbitrary boundary conditions at the edges. The eqt@-capture adequately the sharp variations in the fields near the
tions of static, linear, piezoelectricity are satisfied at every point afamped and traction-free edges but neither gives the order of the
the body. The analytical solution is in terms of an infinite seriesjngularity nor its precise width. The interested reader should con-
the boundary conditions and the continuity conditions at the intesult Ting[26]; Vel and Batrg 27] have commented on this for a
faces between the laminae are used to determine the unknayemeralized plane-strain problem.

0 0.1 02 03 04 05

x /L,
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Combinations for the

Free-Vibration Behaviors of

Anisotropic Rectangular Plates
vvaria | Under General Edge Conditions

Mem. ASME
Department of Mechanical Engineering, The free-vibration behavior of rectangular plates constitutes an important field in applied

Hokkaido Institute of Technology, mechanics, and the natural frequencies are known to be primarily affected by the bound-
7-15 Mageda, Teine, ary conditions as well as aspect and thickness ratios. Any one of the three classical edge
Sapporo 006-8585, Japan conditions, i.e., free, simply supported, and clamped edges, may be used to model the

e-mail: narita@hit.ac.jp constraint along an edge of the rectangle. Along the entire boundary with four edges,

there exist a wide variety of combinations in the edge conditions, each yielding different

natural frequencies and mode shapes. For counting the total number of possible combi-

nations the present paper introduces the Polya counting theory in combinatorial math-

ematics. Formulas are derived for counting the exact numbers. A modified Ritz method is

then developed to calculate natural frequencies of anisotropic rectangular plates under

any combination of the three classical edge conditions and is used to numerically verify

the numbers. In this numerical study the number of combinations in the free-vibration
behavior is determined for some plate models by using the derived formulas. Results are

corroborated by counting the numbers of different sets of the natural frequencies that are

obtained from the modified Ritz meth¢80021-893600)02203-7

1 Introduction neering and physical sciences. Among the combinatorial theories

is.Polya’s theory of counting[5,6]) which is well known as a

The free-vibration analysis of rectangular plates has been 8Lssical and basic theory for counting problems involving
academic and practical interest for many decades, and their fr@ﬁfnmetry

vibration behavior(i.e., natural frequencies and mode shapss ., ¢onnection with this topic in the field of structural vibration,
considered to be ess_entlally important technical information Ieissa[7] presented the natural frequencies of isotropic rectangu-
structural design. Various books and monografjis-4)) reveal |5r plates having all possible boundary conditions. It is expected
that there exist many published papers since the 1960s on {Rgt the number of different combinations increases as complicat-
V|brat|0n analySIS OfSOtrOpICI‘ectangulal‘ plateS and that thel‘e ar%g effects such as Orthotropy or anisotropy are included and the
also a reasonable number of resultsdoisotropicandlaminated degree of symmetry reduces with the appearance of the principal
plates published in the last two decades. material axes that are not parallel to the edges. To the author’s
It is well known that the free-vibration behavior of plates isest knowledge, there are no papers dealing with this kind of
significantly affected by edge constraints, which are modeled tygieunting problem in applied mechanics, although the technical
cally by using one of the classical conditions of free, simply sumeed for solutions of such counting in mechanics seems to be
ported, and clamped edges. There are a wide variety of combiiacreasing as mentioned.
tions along the entire boundary of a rectangle when edgeThe present paper deals with the free-vibration analysis of iso-
conditions are independently assumed along each of four eddg#spic and anisotropic thin plates having square or rectangular
When one fixes the position of the plate and does not allow it &hapes subjected to general boundary conditions by using a modi-
rotate or f||p’ there can be4% 81 different combinations of fied Ritz method, and introduces the Polya counting method for
boundary conditiongi.e., three different edge conditions alongcalculating the number of combinations in the free-vibration be-
four edges If the position is not fixed, however, one case ig1@vior. The underlying notion and definition in the counting
obtained only by rotating or flipping the plate from the originafh€ory are explained first, and then formulas, called cyclic poly-
position, and some cases are possible which yield the identical 88fnials, are introduced to actually figure out the numbers for
of natural frequencies. various plate models. A Ritz method is modified _and used to
It is sometimes necessary to grasp the number of possible cdRforporate arbitrary comblnqtlons of the three classical edge con-
binations of structural response in the design situation, and tjsions, and computer code is developed to calculate natural fre-

same is true when the management of structural design dat 'i’sem:ieS of the plates for some different models. The validity of
I@ﬁ present approach is established by showing the exact match

considered. The theory of counting has advanced in the are o -
combinatorial mathematics and has potential applications in er?g?ms?oltcae gé%ﬁ:ggdeggmgg rsof calculated frequencies and that

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF H P H
MECHANICAL ENGINEERS for publication in the ASME QURNAL OF APPLIED 2 POIya Coummg Theory and Appllcatlon

MECHANICS and presented at the ASME 17th Biennial Conference on Mechanical . ; ; )
Vibration and Noise, Sept. 12—-15, 1999, Las Vegas, NV. Manuscript received by the2'l POlya Coummg Theory' The basic concept in POIya s

ASME Applied Mechanics Division, June 24, 1999; final revision, Dec. 2, 199gheory of counting([5,6]) is explained first. Consider a “permu-
Associate Technical Editor: J. R. Barber. Discussion on the paper should be g&tion” which is a one-to-one mapping from a d&tonto D. For

dressed to the Technical Editor, Professor Lewis T. Wheeler, Department of Mgn j||lustrative purpose, a sétis defined aD :{1 23 4 and a
chanical Engineering, University of Houston, Houston, TX 77204-4792, and will b - e D A
accepted until four months after final publication of the paper itself in the ASMéermthatlon of transposing—11, 2—4, 3—2, and 4-3 is ex-

JOURNAL OF APPLIED MECHANICS. pressed a®=(} 2 3 3). The identical permutation can be ex-
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pressed a®=(1)(243) to mean(1—1) and (2—4—3—2), and G acts on a seb. Definitions of finite group, cyclic group, per-
this cycle notatior(see, e.g.[8]) is used hereafter. Whe®, and mutation, and others are given, for example, in books by Cohen
P, are such two permutations, a compositigmoduc P,P, of [9] and Dornhoff and Hohii6]. . _ )
P, andP, also becomes a permutation. _In the Polya counting theory, a kind of polynomial call_ed ‘cy-
A setG, which is composed of all permutations applicable to glic polynomllal” is used tq calculate the pgmber of gomblnatlons.
setD, can be considered as a finite group, because it satisfies Y{B€n a cyclic group, which acts on a finite grobpis denoted
associative law and there are a unit and inverse elemeis A PY G and C(G) is a number of elements i which have the
kind of set, which is composed of all possible rotations and fliEyclic numberk, then the cyclic polynomial for a group acting

pings of a plate geometry, becomes such a permutation group©n D is given by

The next important notion in counting is “class,” which is o|
explained below by using a simple example. Figui@ hows an 7 _ i z Cu(G)xK 1
isotropic square plate whose edges are numbered (kst-hand c(X)= |G| &4 KG)X". @

edge, 2 (lower edge, 3 (right-hand edge and 4 (upper edgg

Free, simply supported, and clamped edges are denoted heredteusing the terminology in the following example3,is a set of

by F, S, and C, respectively, and for example, two plates shownagtions of rotation and flipping over the geometry, 464l is the

Fig. 1(b) are represented by CSFF and FCSF. order of a group which is the number of elementsGnThe x
Suppose that these numbered edges 1, 2, 3, and 4 are fixegejfresents the number of the different edge conditions applied to

the space. The number of combinations in the boundary conditieach edge.

becomes 3=81 when one of the three edge conditions is applied

along each edge. From a viewpoint of structural behaviors, how-2-2 Application of the Theory. Figure 2 shows various
ever, two square plates shown in FigblLare identical because P/at® models used in numerical examples. Plajés an isotropic

gauare plate, platéh) is an isotropic rectangular plate and plate
&

one case is obtained just by the rotation of ninety-degree from the" i . N

other. In contrast, one of the plates shown in Fig) can be (©) IS @ specially orthotropic square plate where the principle ma-

represented by neither rotating nor flipping the other. The twia! axes are parallel to the edges. Plaleis a specially ortho-

plates shown in Fig. (b) are claimed to belong in the samelfOPIC rectangular plate and plate) is a diagonally orthotropic
square plate with the principle material axes being parallel to the

“class,” while the two in Fig. 1c) are said to be “not in the *: . o ;
class.” In mathematical words, the present paper deals wiff@gonals. Platé) is a skew orthotropi¢anisotropig square plate

counting the number of classes when a cyclic permutation groap_d plate(g) is a skew orthotropic rectangular plate, where the
principal material axis has a certain angie#0 deg, 45 deg, 90

deg with respect to the straight edges. The four edges of the
plates are numbered 1 through 4, as explained in k&, &nd the
set of four edges is given iy ={1,2,3,4.

For an isotropic square plate), a group of actions in which
the mapped configurations coincide with the original one by rota-
tion is

v

G, ={(1)(2)(3)(4).(1234,(13)(24),(1432} )

[]
]
]
~ |

1 o] 3 c F P i|'s
) 1
T

TTTTT7

where four elements represent counterclockwise rotations of 0
(a) (o) deg, 90 deg, 180 deg, and 270 deg, respectively. Similarly, a
P F group generated by flipping is

Gi={(1)(3)(24).(2)(4)(13),(12)(34),(14(23)}  (3)

AN
AN

o
=3
(9]

3

S where the four elements represent flipping with respect to the axes
________ I, 1, IV, and lll, respectively, in Fig. (a).
S F A union G=G,+G;s is a cyclic group with a unit element
(e) (1)(2)(3)(4) andG, is a subgroup ofs. By substitution ofG with
Egs.(2), (3) into Eqg.(1), one gets a cyclic polynomial for plate)
as

A\

Fig. 1 Class and nonclass of plates with boundary conditions

4 4
|
]

>|<___ Vb - —-3 1 3

)
|
T ) 2

(a) isotropic square plate (b) isotropic rectangular plate (c) specially orthotropic square plate

a 4 4 4
1 3 1 3 123 \/3
/
) ] 7 7

(d) specially orthotropic  (e) diagonally orthotropic  (f) skew orthotropic  (g) skew orthotropic
rectangular plate square plate square plate rectangular plate

Fig. 2 Numerical examples (solid lines indicate the major principal material axis )
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Table 1 Cyclic polynomials and the number of combinations y
for plate models shown in Fig. 2.
Zs(®) /
Plate Cyclic Polynomial /
Model x=2 x=3 x=4
b e
@ Zo() =%(x4 +2x% +3x% +2%) 6 21 5 T X
L
BOD | Lot var s ) 9 36 100 /
B) ZG@):%(XA +32) 7 21 76 R
D@ Zom=Let 412 10 45 136 . .
2 Fig. 3 Rectangular plate and coordinate system
Zg(X)= §(X +2X°+ 3Xx°+ 2X) (4) thel andT axes. The dimension of the plate is given &y b

X h (thicknes$. The stress and strain relation is given by
where C,(G)=1, a coefficient ofx*, is determined fromone

element(with k=4) of (1(2)(3)(4) in Eq. (2), C4(G) =2 is from o) [Qu Qu 0 (g
two elements k= 3) of (1)(3)(24) and (2)(4)(13) in Eg. (3), and o =[Qp Qxn O eT (7)
SO on. LT 0 0 Qggl LT

When one considers combinations for two different kinds of _ )
conditions along each edge, for instance free edge and clampéere the matrix elements are given by
edgeZs(2)=6 is obtained from Eq4) for x=2. Likewise, com-

binations of Z5(3)=21 and Z(4)=55 can be calculated for Q112L7 zzzi,
three(e.g., F, S, and Cand four(e.g., F, S, C, and an elastic 1-virrrL 1-virvq
constraint of some degrgedge conditions, respectively. E
For plate (b), the axial symmetry about the Il and IV axes lz:Ll Qec=Gy1 (8)
disappear an, andG; become 1-vrm
G, ={(1)(2)(3)(4),(13)(24)} (5a) with E, andE; are moduli of longitudinal elasticity in the and
T directions, respectivelyG,  is a shear modulus and, ; is a
Gi={(1)(3)(24),(2)(4)(13)} (5b)  Poisson’s ratio. Relatiofi7) can be transferred to
The union ofG=G, + G; determines a cyclic polynomial for this 611 612 616
plate, andZ5(3) =236 is given forx=3. Although the reference of Ix - I = Ex
Leissa[7] claims that 21 case@ot 36 casesexist for a rectan- oy =| Q2 Qzn Q|| & 9)
gular plate, the aspect rata/b is varied as necessary in that Tyy 616 625 666 Yxy

paper, while the aspect ratio is fixed in the present result of
Zs(3)=36. For example, a FSSF plate with aspect rafibb=2  where the stresses and strains are given with respect todhd
is regarded as identical as FFSS plate wittb=0.5 in the y-axes([10,11]).
reference[7]). If one considers the small-amplitudénear free vibration of a
Group (5) is also applicable to platé) (specially orthotropic thin plate, the deflectiow may be written by
square plate and plate (d) (specially orthotropic rectangular _ .
plate. It is interesting to note that the number of combinations for wxy,) =W(x,y)sinot (10)
isotropic plates differs between the squaae=() and rectangular whereW s the amplitude and is a radian frequency of the plate.
(a#b) plates, but the specially orthotropic plates show no diffefFhen, the maximum strain energy due to the bending is expressed
ence in the number of combination between the two plates. by
For diagonally orthotropic square plat® where the principal

material axes coincide with diagona(s, and G are 1 Du D1z Dis
— T
Gr:{(1)(2)(3)(4)1(13)(24)} (6a) Umax?zj‘ fA{K} D12 D22 D26 {K}dA (11)
D16 D26 D66
Gi={(12)(34),(14)(23)} (6b) ) . i
4G ields a f ber of binati h h where the D;; are the bending stiffnesses defined y;
andG=G, + G; yields a fewer number of combinations than tl at:(h3/12)Qi- and{x} is a curvature vector
of plate(c). ]
In both plates(f) and (g), where skew orthotropy is assumed AW W PwW)T
(not diagonally, flipping does not exist, i.eG;= ¢ (empty set {x}=1— Ty T oxay 12)
All these cyclic polynomials and values @i;(x) with x=2, 3 _ o T
and 4 are presented in Table 1 for platasthrough(g). The maximum kinetic energy is given by
3 Free-Vibration Analysis of Anisotropic Plates Tmax:%szf szdA (13)
A

A semi-analytical solution is developed here by using the
method of Ritz for the verification of the counting results in thisvherep is the mass per unit area.
numerical study, because such an analysis-based solution has For the sake of simplicity, nondimensional quantities are intro-
low computational cost and easiness in varying parameters,diced as
contrast to numerical methods such as the finite element method.
Figure 3 shows an anisotropic rectangular plate and the coordinate = 2_X

2y . . .
system where the major and minor principal axes are denoted by a Ky (nondimensional coordinatgs
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a 4 Results and Discussions
= — (aspect ratip,
b 4.1 Accuracy of the Ritz Solution. Frequency parameters
Ech3 are calculated by using Eq17), and accuracy of the solutions
(reference stiffnegs (14) should be tested before counting different sets of natural frequen-
cies to estimate the number of combinations. The material con-
stants used in the examples are takgtil]) for graphite/epoxy

Do= 12(1—virvrL)

D;; .
dij=D—” (nondimensional stiffness composite as
0
G/E material: E, =138 Gpa, E;=8.96 Gpa,
_ 2 p
Q=wa"\/— (frequency parametgr G, 1=7.1 Gpa, ».=0.30
The next step in the Ritz method is to assume that the amplitudeTable 2 presents a convergence study for the frequency param-
is etersQ);~Q, (lowest four modesof Plate(f), i.e., a skew ortho-

tropic square plate with the major principal axis 6£30 deg.
Four different boundary conditions, FFFF, SSSS, CCCC, and
W(¢ n)= 2 2 AniXm(€)Yn(7) (15)  CFFF (cantilevey, are considered. It is clearly seen that the fre-
m=0 n=0 guencies monotonically decrease from above as the number of
whereA,, are unknown coefficients, and.,(¢§) andY,(#) are terms is increased in E415), and converge almost with the four
the functions modified later so that any kinematical boundary cosignificant figures when the termdd =N=10 in the series are

M—-1 N-1

ditions are satisfied at the edg§2,13). taken. Based on the test results, the frequencies are calculated
After substituting Eq(15) into the energie$11) and(13), the hereafter by using th& X N=10x 10 solutions.
stationary value is obtained by The solution accuracy is also validated by comparison of the
P present values with others for plata). Table 3 compares the
T U =0 (Mm=012...:n=0,12...). present results with the series solutions of Gorrfibé-16 and
0AW( max~ Urma ( 2 2. the exact solutior{[7]) for isotropic square plates. As shown in

(16) the table, the agreement is excellent for all the results compared,

Then the eigenvalue equation that contains the frequency parétfid the validity of the analytical method is established.
eter() is derived as

M-1 N-1
> E [dyql (3200 + @2 5 1 (2002 4 | (0220 4 4] (0022 4.2 Verification of the Polya Theory With Numerical Ex-
m=0 n= periment. Considering the edge conditions of F, S, and C, natu-
+ 2012100 4 (1210) 4 93 (] (012D 4 | (1012) ral frequencies are calculated for the plate models shown in Figs.
16 26

2(a)—(g). Calculations of frequencies are done for all tHe=81
+4a’dgg 1P —02(0000] S AL =0

(m=0,1,2...:n=0,1,2...) 17)
wherel are the products Table 2 Convergence study of frequency parameters Q of
((pars b0 419 skew orthotropic square plates  (plate (f) in Fig. 2, =30 deg,
pars) _ ,(pg rs X
e = o - Do (18) G/E material )
of the two integrals defined by B.C. 1st. 2 nd. 3rd. 4th.
Num.of terms
1 oPx, g DX 6x6 2021 2250 47.74 63.37
P = f TEP T (19) FFFF 8x8 2021 2231 4690 6153
10% 10 20.21 2231 46.89 61.52
Equation(17) is a set of linear simultaneous equations in terms ¢ 6x86 4431 67.23 1139 159.9
the coefficientsA,,,, and the eigenvalueQ may be extracted by | $sss 8x8 44.31 67.23 1126 159.9
using existing computer subroutines. 10% 10 4431 67.23 112.6 159.9
The analytical procedure developed thus far is a standard r¢ 6%6 93.61 116.6 163.9 236.4
tine of the Ritz method, and the modification is explained next § ccce 8x8 93.61 1166 163.8 235.4
as to incorporate arbitrary edge conditions into the amplitug 10%10 93.61 1166 163.8 235.4
W(¢, 7). In the traditional approach, for example, using the bea 6X6 13.79 18.61 36.16 74.20
functions forX,,(§) andY,(7), many different products of regu- | cepr axa 1279 18.60 3578 72.04
lar and hyper trigonometric functions exist for arbitrary condition 10%10 13,70 18.60 3577 72.02
and it is difficult to make a unified subroutine to calculate all

the various kinds of integrals.
The present approach introduces a kind of polynomial Table 3 Comparison of frequency parameters € of isotropic
square plates (plate (a) in Fig. 2

(20)
Y, (7)=n"(n+ 1)32( — 1)84 BC. Reference 1st. 2 nd. 3rd. 4 th.
o " FFFF Present 13.17 19.22 24.42 34.23
Whgre B1, By, B, and_B4 are bounda_lry indices ([12’133)__ (v=0.333) |Gorman(1978)]  13.17 19.22 24.42 3423
which are added to satisfy the kinematical boundary conditiof—gggg Present 072 2935 78.96 9870
and are used in such a way Bg=0 for F (free edge 1 for S _ ) ’ ’ ’ ]

; (v=03) | Leissa(1978) 1974 49.35 78.96 98.70
(simply supported edgeand 2 for C(clamped edge To the oGo0 w—— prs — Y e
CSFF plate shown in Fig.(#), for instance,B;=2, B,=1 and 7 resen : - 1082 a1
B;=B,=0 are applied. With the boundary indicBgs and Eqs. |—(#=03) |Gorman(1970] 3598 7340 ' :
(20), the method of Ritz can accommodate arbitrary sets of tf ~CFFF | Present | 3460 8.358 21.09 27.06
edge conditions, and the integrdld) can be exactly evaluated. | {¥=033% |Gorman(1976)] 3459 8356 21.09 27.06
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Table 4 Classified boundary conditions by numerical study Table 4 (Continued )
for various plate models shown in Fig. 2

Plate (e) Plate (f)(g)
Plate () Plate (b)(c)(d)

( (15)-~=-===----- (22)__;_6_5_§__
{ L)mmmmmmmeman (12)mmmmmmeacon IS D E—— (18)=mmnmnmnmn- Fers CFFeC
FFFF FsScc FFFF ccec ( s (16) mmmmmmmmae (28)=mmmemmmmmm
( 2)mmmmmmnoee Fccs ( 2)mm=mmmomoms cFcC FEES Fess Fccs
FFFS SFCo FFFS (19)=---=-===m- rEer SSFe CSFC
FFSF SCCF FSFF FSF e rE SscCF (¢ 73 [
FSFF CFSC (8)----------- (20)--==-om---- s . CFSS FCCC
SFFF CsFo FFFC SFSS 3y s (17)memmmmemee CCFC
€ 8)-mmmmmmmee CCFSs FCFF SSSF TrEE Fesec (¢
FFFC CCSF ( 4)-----mmmooo (21)--=--~---== CFF SCFC SFSF
FFCF (18) = mmmmmmmeee FFSF SESC F : eFCs (26) - mmmmm e
FCFF FCFC SFFF SCSF CFEFF CSCF SFSS
CFFF CFCF ( 8)-mmmmmmomee L C4)mmme 58T (18)mmmiee SSSF
( 4)mmmmmmmmmnn (14)mmmmmmm FFSS SFCF FES: FCCF [§ %5 e —
FFSS FCSC FSSF CFSF §SFF CFEC SFSC
FSSF SCFC SFFS (23)—==mmmmmmmm ( 8)--m--- P (18) —mmmmmmmmme SCSF
SFFS CFGCs SSFF SFCS Frs¢ P (28)mmmmmmmmmam
SSFF ¢CSCF ( 8)=-=m=mmmmmn SSCF Frcs Scor SFCF
§)mmmmmmm (15)m oo FFSC CFSS StLE CESsC CFSF
FFSC FCCcC FCSF CSSF CSFF GSFC (O]
FFCS CFCC SFFC (24)--~m=--==-= (8)----- s (20) —mmmmmmmmme SFCS
FSCF CCF o SCFF SFCC FFC recece CSSF
FCSF cccrF ( T)mmmmmmmemee SCCF CCFF creo (30) == -mmmm-
SFEFC  (1g)-mmmmmmmnn FFCF CFSC CD s CCF G SFccC
SCFF ssS s CFFF CCSF SPSE CecCF CCSF
CFFS (17)=mmmmmmmmm ( B)ww—-mwomooo (25)--=-=--m—=m S E S F (21)cmmmemsee (81) mmmmmmmmeee
CSFF sssc FFCS Ss S (8)“;';FC sss SSSS
{ 8)rr-m-mmmmmo sSCS FSCF (26)=~=---==--= FCFS (22)—mmmmmmmmmm (32)=--mmmmmm o=
FFCC sCsSSs CFFS $8S8C SFCF S5 S C S8 SC
FCCF cCSsSSs CSFF S CSS CFSF ssCS SCS8SSs
CEFFEC (18)==mmmemm (9)=mmmemmmman (2T)wmmmmmmmm scss (33)mmmmmmmmmmm
CCFF sscec FFCC 5SCS ( 9)----m- s csss SSCF
(T)mmmmommemes sccs FCCF csss P (28} amrmmmemee CFSSs
FSFS cssc CFFEC (28)-====-=---- SFES ssce (84)=mmmmmmmmmm
SFSF ccss CCFF sscc (10)=---=--- 5 coss sscs
( 8)-mmmmmmmee (19)~-mmmmmmmm e (10)----—------ sccs ESss (24) ~mmmmmmmmmm cCSsSSs
FSFC scsc FSFS cssc SFSS scse (85) cmmmmmm e
FCFS cscs (11)-=smmommmee ccss SSEs bsos sscc
SFCF (20) mmmmmmmem e FSFC (29)--=-=-=---- s (28)mmmmmmae ccss
CFSF scce FCFS scsc (11)-mommmmm s soccs (86)—mmmmmm e
( 9)=mmooommen cscc (12)--==-caeeee (30)====-mmmm o Fss¢ Ssse scsc
FSSS ¢cCs o FSSS sccc SFCS 26) oo T (87)mmmmmmme il
SFSS cces SSFS ccsc SCFS (28)--c o SCCF
SSFS (21)~-mmmmmmmen (18)----------- (81)---o=-mm-- CsSSF cscec CFSC
5SSSF ccce FSSc CFCF (12)=mommmmmm e (88) —m—memmmie
(10)----------- FCSS (32)-——mmmmmmm- FSCF ccsc TS
Fssc SSFC CFCS FCSF cccs csso
FCSS SCFS CSCF SFFC (27)-mmmmm oo (39)—momomt I
SFCS (14)=-mmmmmmmme (83)=mmmmmmmmm CFFS cccecce scce
sSsFC FSCS cCFCC (18)=-=====-=-= scee
SSCF CSFS CCCF FSCs (40)--——-Z-l__
SCFS (15)--=-------- (84)--——wm-mmoo SFSC crer
CFSS FSCC cscs s$CSF (41)=mmmmmlae
CSSF FCCS (35)--=----===- CsFs Cros
(11) == === ——m=mm CSFC cscc (14)-=—wmmmmee CSCF
FSCS CCFS cccs Fscc (42)——smnloiol
SFESC (18)-=~~=c=menmm (36)—=-=mm-=mn gggg cF oo
CSFs (a2l ceee GCsE Fese  cecr
FCsC SCFC cscs
SCFC (44) mmmmmmm e
cscc
cccs
(48) == -mmmmmoo-
cccece

cases, and each new set of frequencies is numerically compared to
the previously calculated values to identify whether these sets of

boundary conditions belong to the same class. As is clearly seen, the numbers of combinations for plaje
Table 4 presents classified boundary conditions obtained in thites(b), (c), (d), plate(e) and platesf), (g) are 21, 36, 27, and
numerical study. For platéa), 21 classes are obtained startingi5, respectively, and exactly coincide with the numbersde3
from (1) FFFF. The class is numbered up to the most constraingfTable 1 estimated by using the Polya counting theory.
case of(21) CCCC. This number of 21 is identical withg(3) Table 5 presents frequency paramef@rsf the specially ortho-
=21 in Table 1. It is easily understood the?) FFFS, FFSF, tropic plate(plate(c) in Fig. 2) obtained for the 36 combinations
FSFF, SFFF yield the identical frequency values for a square isglassified in Table 4. The lowest six frequencies are tabulated for
tropic plate. It is also interesting to know that eight sets of edg@ture comparison in the order listed in Table 4. Three frequencies
conditions give the identical frequency values 6y, (10), and are zero due to rigid-body motions of translation and rotations for
(12). For plategb), (c), and(d), where some axes of symmetry arq1) FFFF, and the first frequency is zero due to that of rotation for
lost, the frequencies fd2) FFFS, FSFF are no longer the same a®) FFFS, FSFF and4) FFSF, SFFF. The frequencies tend to
(4) FFSF, SFFF, and 36 different classes are obtained. increase, as one sees rows going down from the top ro¢d)of
In contrast, for platée) where there are the principal materialFFFF to the bottom of36) CCCC in the table and the total con-
axes on the diagonals, the number of classes reduces to 27, hemaints along the edges are gradually strengthened.
ever, this number is still more than plat@ due to the diagonal
orthotropy. This difference is seen by observing ttt FFSS, .
FSSF, SFFS, SSFRwo edges simply supportgdn plate (a) 5 Conclusions
splits into(4) FFSS, SSFKi.e., the major material axis is located The Polya counting theory in combinatorial mathematics is in-
S0 as to bisect the right angle at the corner of the adjacent 88duced in order to solve a type of mechanics problem which
edgeg and(9) FSSF, SFFSi.e., the major material axis is in the may be encountered in plate structural design. The counting
direction of a diagonal connecting two corners made by the F antethod, which is based on the group theory, is used to determine
S edgesin plate (e). the number of combinations in the boundary conditions in con-
The maximum number of combinations is found for plai®s nection with the plate vibration behaviors. For various square and
and(g). Each class in these plates has at most two sets, whersgotangular plate models with isotropic, specially orthotropic, and
the first two symbols are interchanged with the last two symbolskew orthotropic material properties, the number of combinations
such asFF andFS in (2) FFFS, FSFFFF andFC in (3) FFFC, obtained by the counting theory is numerically verified by calcu-
FCFF, and so on. lating natural frequencies of the plates. It is hoped that this ap-
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Table 5 Frequency parameters
square plates (plate (c¢) in Fig. 2, G/E material )

Q of specially orthotropic

B.C. 1st. 2nd. 3rd. 4th. 5th 6th
(©)__|FrFF 0 0 0 2021 2231 36.89
(2) _|FFFS, FSFE 0 9.858 1538 3413 4986 7090
(3 |FFFC,FCFF_| 3510 _ 1169 2199  39.62 6158 8097
(4) _|FFSF.SFFF 0 1024 3035 6047 6685 6955
(6) |FFSSFSSF.SFFSSSFE
5053 2177 5672 6237 7767 1092
6) |FFSCFCSF.SFFC,SCFF
6977 2764 6268 6692  81.11 1178
7)) _|FFCE.CFFE_ | 1378 1860 _ 3577 7202 8642  92.65
(8) |FFGSFSCF.CFFS,CSFF
1511 2767 59.30 __ 8798  101.1 112.0
9 |FFCGC,FCCF,CFFC.CCFF
1598 3270 6987 _ 8832 1040 1278
(10)_|FSFS 9.845 2166 3941 5503 88,71 97.03
(i1) _|FSFCFCES 1539 2570 49.89 6392 _ 9857 1041
(12)_|FSSS,SSFS 13.76 4376 68.33 9317 9388 1396
(13) |FSSCFCSS,5SFC,SCFS
[ 1854 5370 _ 70.11 100.1 1082 1513
(14 |FSCS.OSFS | 2055 4741 9304 9560 1153 1572
(15) |FSCC.FCCS.CSFC,CCFS
2412 5677 9442 1102 1206 1679
{i6) |FCFC 2235 3088 61.61 74161005 1208
(17) |[FCSC,SCFG | 2478 6495 7245 1076 1245 1644
(18) |FCCO,00FC | 2924 6757 _ 9623 1263 1270 _ 1800
(19) |SFSF 3869 4311 59.67 9433 _ 150.1 154.8
(20) |SFSS,SSSF 39.84 5105 8020 _ 1308 1560  166.0
(21) |SFSC,SCSF_| 4028 5476 8920 1454 1562 1680
(22) |SFCF.CFSE 5047 6385 _ 7719 1076 1599  196.0
(23) |SFCS,SSCF,CFSS.CSSE
6133 70.01 9463 1412 1970 2056
{24 |SFGC.SCOF,CFSC,CCSE
51.64 7288 1025 1549 _ 1972 _ 2072
(25) |SSsS 24,31 67203 1126 1599 1772 1797
(26) |555C,5055 | 4641 __ 7470 1259 1608  181.0 1985
(27) |[S5CS,0SSS | 6469 8314 1238 1878 2003 2153
(28) |SSCC,SCCS,CSSC,0CSS
6620 _ 89.38 __ 136.1 3011 2059 2185
(29)_|SCsC 4947 8364 1406 1620 1857 2186
(30) |SCCC,C0SC | 6841 9705 1499 2020 2224 2255
(31) |CFCE 8777 9029 1006 __ 126. 1736 2420
(32) |CFCS,CSCF_| _88.41 9496 1149 156.1 2216 2428
(33) |CFCC,OCCF | 88.63 9714 1215 1687 2398 2430
(34)_|CSCs 50.89 1053 1402 1995 2457 2587
(35) |CSCC.CCCS | 9199 1103 1512 2167 2464 2615
(36) |CCCC 93.61 1166 163, 2354 2471 264.8

Journal of Applied Mechanics

proach may be extended to counting problems of more compli-
cated geometry, modeling, and material properties in mechanics.
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Department of Electrical and

Electronic Engineering, Sate I I ite Trai e cto ri es a n d
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. and Optimization, The principle of virtual work and Lagrange’s equations of motion are used to construct a
e-mail: les@maths.uwa.edu.au system of differential equations for constrained spatial multibody system modeling. The
A Y Zomaya differential equations are augmented_with _alg(_abraic c_onstra[nts repres_enting the system
e T being modeled. The resulting system is a high index differential-algebraic equation (DAE)
Parallel Computing Research Laboratory, which is cast as an ordinary differential equation (ODE) by differentiating the constraint
The University of Western Australia, equations twice. The initial conditions are the heliocentric rectangular equatorial gener-
Perth, WA 6907, Australia alized coordinates and their first time derivatives of the planets of the solar system and an
e-mail: zomaya@ee.uwa.edu.au artificial satellite. The ODE is computed using the integration subroutine LSODAR to

generate the body generalized coordinates and time derivatives and hence produce the
planetary ephemerides and satellite trajectories for a time interval. Computer simulation
and graphical output indicate the satellite and planetary positions and the latter may be
compared with those provided in the Astronomical Almanac. Constraint compliance is
investigated to establish the accuracy of the computafi§6021-8936)0)03403-6

1 Introduction Studies concerning the theory and computation of DAEs have
Planar and spatial multibody modeling and constrained vari een documented ifl1-23. Involved mechanical examples of

tional dynamics have been pursued substantially since 1980. Atf- Es may be found i_|{23—2@. .
thors such as Haufg], Nikravesh[2], and Shaban&3,4] have Planetary ephemerides have been computed by various research

studied rigid and flexible planar and spatial systems using vario@&UPs including space agencies and J.P.L. and this information is
software tools, for example, ADAMS(Automatic Dynamic made available in the publlc. domain 4&¥] and.the Astropoml-
Analysis of Mechanical Systemg5,6]) DADS (Dynamic Analy- cal Alm_anac[28]. The data is accurately prowde_d and mv_olves
sis and Design System(7]), and MADYMO (MAthematical Ccomputing phenomena such as planetary aberration, nutations and
DYnamical MOdel$ ([8]) and have contributed modeling, com-liberations into consideration; s¢@9] for further details about
putation, and software design techniques to the field. Here tBherical astronomy. Software developed by J.P.L.,[36kand
authors use their own planar and spatial constrained variatiohdl], provides detail about computation of planetary ephemerides
system softwareMultibody Systeni[9,10]), for computing satel- and has evolved to produce the more recent DEZ@elopment

lite motion and planetary ephemerides of the solar system aBghemeris 200 DE202, DE405, and DE406 lunar and planetary
recording the accuracy of the integration method employed. ephemerides.

Multibody system equations may be cast as differential- The purpose of this work is to investigate the numerical accu-
algebraic equationfDAEs), since the system equations are augracy of integrating multibody system equations, by computing the
mented with algebraic constraints defining the geometry of tigotion of an artificial satellite and ephemerides of the planets of
system. Simeon et gl11] investigates thoroughly the theory andthe solar systendthat of the Earth is in fact the Earth-Moon
computation of DAEs. The integration package used by Simeontarycenter given initial ecliptic orbital elements or heliocentric
ODASSL ([12]) and differs from LSODAR in that the constraintrectangular equatorial coordinates provided in the Astronomical
equations need not be differentiated thereby reducing numerigaanac[28]. The computation of the generalized coordinates
Inaccuracy. ] ) and their time derivatives results in the ephemerides and is

Brenan et al.[12] introduce the basic types of DAES, con-achieved through integration of the governing multibody system
strained v_arlatlonal prol_)lems, the theory, so_lvablllty and _|nde(>_§DE_ The softwareMultibody Systemused to compute the tra-
concept, linear and nonlinear systems, numerical methods invofyzsries employs the use of generalized Cartesian coordinates and
ing order reduction and stiffness, software including DASS ublicly available code found in the packages LAPACK/

basgd on the BDF methods for DA.E computatipn, algorithm INPACK [32] and the numerical integration subroutine LSO-
applications, and examples of DAESs in problems involving rlgldD

bod ¢ traiect trol._electrical network dt AR [21]; this allows automatic step-size selection to control
moet%ozycs)felmzé rajectory control, electrical networks, an ri'gcal error tolerances, method switching, singularity detection,

number of function evaluations, and additional information to be
Comibuted by the Aoplied Mechanics Division OfE AMERICAN SOCIETY O obtained in order that efficiency and accuracy of the numerical
ontributed by the Applied Mechanics Division ol MERICAN IETY OF . .
MECHANICAL ENGINEERS for publication in the ASME QURNAL OF APPLIED CompUtat'Qn may be c_ompa_red against o_ther SChe_mes'
MECHANICS Manuscript received by the ASME Applied Mechanics Division, 1€ main aim is to investigate constraint compliance through-
March 31, 1999; final revision, May 5, 1999. Associate Technical Editor: A. A. Ferrput the computation to determine thdft of the constraint equa-

Discussion on the paper should be addressed to the Technical Editor, Profe%s@hs. for different choices of relative error tolerance one may
Lewis T. Wheeler, Department of Mechanical Engineering, University of Houston !

Houston, TX 77204-4792, and will be accepted until four months after final publf—jbserye bette'r.constramt compliance. Ea.r“er. quk| Fox d:19§1,|
cation of the paper itself in the ASMEDIRNAL OF APPLIED MECHANICS. involving collision of hard and soft bodies indicated particular
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numerical difficulties with constraint compliance. This study was M CT g Q
chosen because the dynamics are very smooth, but there are still d N Qe . (2.9)
theoretical constraints that need to be satisfied. C O d

The rest of the paper is divided as follows. Section 2 providgsr further information on the this technique one may corf&]lt
the multibody system equations using the principle of virtual worgnd[g]_
and Lagrange’s equations. Section 3 shows how a high index
DAE may be cast as the underlying ODE suitable for numerical pifferential Algebraic Equations
integration. Section 4 introduces the spherical astronomy concern- . T . ) .
ing calculation of planetary ephemerides and satellite trajectories Constrained variational systems usually involve differential

Section 5 presents the numerical results and computational det§f&ations augmented with algebraic constraints involving system
concerning the integration of the underlying ODE of the orbitaf@riables for which the equations are being computed and hence

system and finally Section 6 reviews the researched ideas. ~ (€Se systems can be represented by DAEs. Petzold and co-
authors have performed substantial research on the solvability and

computation of DAEs[12] address the foundations of the theory,

computation and applications of DAEs and include many refer-
2 Spatial Multibody System Equations ences on earlier work in this field; other important contributions to
e study of DAEs were given in the introduction. A DAE may be

The general equations of dynamic equilibrium for multibod)tlh
ithe form

systems can be formulated using generalized Cartesian coo
nates, the principle of virtual work and Lagrange’s equations of F(x,x,t)=0. (3.1)
motion. The following derivation follows closely the work of Ni- . . .
kravesh 2] and ShabangB,4] whose formulations of the resulting The DAE of the multibody system considered here is of the form
differential equations of motion can, in fact, be shown to be I
equivalent. 14 v

The Euler parameter method involves Euler parameters rather 0 M 9 b |=fq=| Q (3.2)
than Euler angles and is discussed thoroughly3B+36 and[3]. . a. c ° | )
The standard Cartesian generalized coordinates are used to de- M (a.t)
scribe the position of a local body coordinate system which moves
with the body, and the Euler parameters may be used as the gehereu=\ andv={. The matrix on the left-hand side is, how-
eralized coordinates for the orientation of a body coordinate syaver, singular, differentiating the third equation above with re-

tem with respect to the global frame, that is spect to time twice, yields
®i:(60101102763)i—r (21) I 0 0
and the complete set of generalized coordinates are 0 M (ﬁ)T q
J v | = g.t)=
a=[R Ry R, 6 0y 0, 051 (2.2) - a : fa.qv=fauv.t),  (3.3)
The theoretical constraint equation for boidig 0 % 0
—mTE. —1=
C(4;,)=0;0;-1=0. (23) " \which has a nonsingular leading matrix providi#@/dq is of full
The kinetic energy of bodyis an integral over the volum¥; rank for all time. The following definition classifies a DAE with
1 respect to differentiation of the system equations given by Eg.
== | piTidV, (3.2).
Ti 2 Lip.r, fidVi (2.4) Definition: The minimum number of times that all or part of the

) - ) DAE F(x,x,t)=0 must be differentiated with respect to t in order
wherer; is the global position vector of the bodycoordinate tg determinex as a continuous function of and t, for t in some

system, and it may be shown that interval, is the index of the DAK12]).
1 1 The original system has been differentiated twice and the sub-
TiZERimRR,iRi+ §®im(~>®,i®i . (2.5) stitution of u=\ can be considered as an additional differentia-

tion. This results in the ODE shown in E.3) and hence the
On substitution of this expression into the Lagrange equations ¥iginal system Eq(3.2) is regarded as a DAE of index three.
motion Note that hereu(t)=[{\(7)d7 (and hencew(0)=0) is com-
puted by the ODE software. To find(t), w(t) must be differen-
E tiated, this is, however, a slightly unstable process. Notexfigt
dt does not need to be treated this way, as its value can be obtained
. . . . . directly by solving Eq.(2.9), at each time-step. Recording the
one arrives at the equations of motion for badyvhich are value ofA(t) at the requested time values passed to standard ODE

(2.6)

o\ aT
aai) oG

Mo 0 . 6 0 software requires modifications to the software. Purpose-built
RRi R, | =R, o 2.7) software(DAE-index 2 can be made to handle this.
0 Moo.i]| O; Qe -2G/ loo,0; ’ Petzold et al[12] discuss the computational/numerical difficul-

) ) ) ) ) _ ties that may arise as a result of differentiating the constraint
Augmenting these equations with the constraint equations yielglguations; the constraint equations may not be satisfied as the

the spatial augmented system equations for kiody integration progresses and excessive differentiation of the con-
Mos - 0 - Q straints is not recommended. Other computational software such
RR,i OT R eR; 0 as DASSL, se¢15] and[16], is also introduced if12] and re-
0 Moo i 20; 0,|= Qeo, |+ Qu.0, quires only the constraint equatio@%q,t) =0, be augmented to
[0 20,] 0 By _2®r®i 0 the differential equation, rather than the user having to supply the

2.8) twice differentiated constraint equatiof; as in Eq.(3.3) and
) Eq. (2.8). This software differs from the LSODA line of integra-
from which one may assemble the complete system of equatiotisn subroutines of20] in (1) the interpolation method of previ-
repeated here as ous solution points required by BDF formuld®) the implemen-
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tation of these formulas, an@) the time-step size method order
determination and constraint compliance or error control used. For
further information regarding algorithms and numerical strategies
see[12].

s K

4 Spherical Astronomy

Green[29] and Danby{37] provide a detailed introduction to
spherical astronomy which includes information on spherical ge-
ometry, the celestial sphere, reference frames, planetary orbits,
heliocentric and geocentric coordinate systems, nutation, libration,
and time. Carroll and Ostlig88] provide an introduction to astro- orbital plane 90—
physics and discuss the celestial sphere, celestial mechanics, in-
cluding Newtonian mechanics, and Kepler's Laws. Kibps8)]
pursues the laws of conservation of energy and the radial energy
equation in his introduction of gravitational force and orbital me-
chanics and finallyf40] provides a modern proof of the Law of
Gravity and shows how this implies Kepler's Second Law that “a
planetary orbit is an ellipse with the sun at one focualthough
this is regarded as Kepler's First Law §jg8]). The following
material is based on the work of the authors stated above and
provides a brief introduction to the theory of celestial mechanics
required in the extension of the codéultibody Systemused to
mathematically model and numerically compute the ODE intro-
duced in Sections 2 and 3.

The codeMultibody Systenis a body of code written in C, +... (4.1)
referencing appropriate mathematical software like LSODAR, a%i]
parts of LAPACK. A user adds the appropriate dynamical equa-

ecliptic

Fig. 1 Heliocentric celestial sphere

3

2 e)'M-i-Se
EZSIH()T

2 3

=M ) sin(am
v=M+ BV sin( )

)sin(2M)+

d the true distance of the orbiting body from the sun is

tions and twice differentiated constraint equations, in the form of a(l—e?)
the mat.rices of Ec(.Z.Q) and allows computation of the system for r= —(1+eCOSV) . (4.2)
the variables of interest. i ) i ) i
The Encyclopedia of Planetary Sciendé4] provides the fol- Using the cosine formula one obtains the heliocentric rectangu-
lowing definition; “An ephemerigplural: ephemeridess defined 1ar ecliptic coordinates of an orbiting body as follows:
to be a tabular listing of the position of a celestial body at regular ¢ cog WP)

intervals.” Nutation is defined bj29] as “the periodic variations
in the position of the true poléof the orbiting body about its r=|n|=r| cogUP)

mean position” and physical libration is defined p39] as the ¢ cogKP)

oscillation of the mean rotation axis of a body. As mentioned e ; ;
earlier, work at JPL sef27], [42], [30], and[31] has resulted in COS{V+w)C.C)E{Q) s_n‘(v%—w)sm(ﬂ)cosﬂ)

the production of planetary ephemerides including: DE102, =r| codv+w)sin(Q) +sin(v+w)cogQ)cogi) | (4.3)
DE200, DE202 involving nutations but not liberations, DE405 sin(v+w)sin(i)

involving nutations and liberations and DE406 including neithef the heliocentric rectangular equatorial coordinates are required
nutations nor liberations. Here no liberations or nutations of afien these may be obtained from the ecliptic coordinates deter-
orbiting body will be taken into consideration in the computatiofhined above using the following approach. Figure 2 may be
of the body generalized coordinates and their time derivatives.found in[29] and indicates an angular tilt of the ecliptic plane and

4.1 Coordinate Systems. In order to compute the planetarythe equatorial plane known as the obliquity of the ecliptic, de-

and satellite trajectories a reference frame or coordinate system is

required. Here the heliocentric celestial sphere is chosen, upon

which astronomical quantities of the celestial bodies concerned, { K
may be measured. lllustrated in Fig. 1 is such a sphere, where

7, and{, are the heliocentric rectangular ecliptic coordinates. The A
first point of Aires, or the vernal equinox i¥. The ascending

nodelL, defines the position on the ecliptic where the planetary/

body orbit progresses from south to north and if the inclination of

the orbital plane, with respect to the ecliptic is between 0 and 90

deg, then the orbit is regarded as direct, otherwise it is known as

retrograde. The longitude of the ascending nades () and is

measured eastward from the vernal equiNgxalong the ecliptic. equator

A is the position of the orbiting body at the time of periheliéh,

is the position of the orbiting body at some timhel, U, andK, ecliptic

form an orthogonal triad, the argument of perihelion ds 7
=/ LA and finally v=/ PSAis the true anomoly, that is, the §¥x
angle from the point of perihelion to the orbiting body located at

P at some timet. The Astronomical Almanag28] provides the

parameters g,e,i,{),w) for the purpose of calculation of plan-

etary ephemerides. The semimajor axis of the orbital ellipse is

e is the orbital eccentricity, the mean anomoly =L —(w

+(), the true anomoly may be computed as Fig. 2 Relation between equatorial and ecliptic coordinates
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Table 1 Heliocentric initial coordinates (AU) and velocity components (AU d 1) of an artificial satellite

R, R, R, R R, R,
-0.590 499 4 +0.722747 8 +0.313354 4 -0.014 0439 -0.007 7559 -0.004 1318
notede. The ecliptic spherical coordinatasand g are the ecliptic Q
R,i

longitude and latitude, respectively, and the equatorial spherical Qei=

| Iy
=F. |77 AT il
wu U AL [T

coordinatese and 6 are the equatorial right ascension and decli- Qu,i
nation, respectively. The heliocentric rectangular ecliptic coordi-
nates aref, z, and{ and the heliocentric rectangular equatoriahnd
coordinates are, y and z these are related by the following
equation: Qrj
Qej= Qou,j
X & 1 0 0 & :
y|=Ag)| 7|=| 0 cose —sing||n (4.4) { I o,
=—F, T , 4.7
z ¢ 0 sine cose |L¢ G| Up,Ag| prij” @

whereA, () is the rotation matrix of a vector through the angle which can be suitably simplified ag =u, =0.
about thex= &-axis. B

It may be necessary to obtain the geocentBarth centered
coordinates of the orbiting bodies rather than use the heliocentjc Resylts
coordinates. Now;p s=rg s+rp g, Whererp s is the heliocentric , i ) )
position vector of the planet under consideration with respect to The authors’ general, spatial, multibody dynamics software
the Sun,r¢ s is the heliocentric position vector of the Earth withMultibody Systentan be employed to produce planetary eph-
respect to the Sun ang ¢ is the geocentric position vector of the€merides and satellite trajectories with arbitrary accuracy given
planet with respect to the Earth; naturatyr g s=rs . Finally if the ngmber of S|gn[f|cant figures found in the provided initial
the geocentric right ascension and declinatiarand 8, respec- conditions qnd _phyS|caI planetary data. The_software can also be
tively, of the orbiting body are known together with the radialeed for animation purposes, but here graphical and tabular output

distance|r|| (obtainable by Pythagoras’s theorgrthen Is more convenient and found below are graphs of planetary and
satellite positions and tables comparing computed data to that
C0SsJd cosa found in the Astronomical Almanac of 1998.
ree=rpg—res=|lr[| cOSdsina |. (4.5) The multibody model involves 11 bodies: Sun, Mercury, Ve-

sins nus, Earth-Moon barycenter, Mars, Jupiter, Saturn, Uranus, Nep-

) . ) tune, Pluto, and one artificial geosynchronous satellite. The initial
Section E3 of the Astronomical Alman#28] provides both the congitions for the planets are provided by the Astronomical Al-

orbital elements and the heliocentric rectangular equgitorial COQfanad 28] and the satellite initial conditions are given in Table 1
dinates for the planets of the solar system on a particular Julighay (Astronomical Unit and AU d L.

day, here Julian day 2450840.5 is considered; these coordinate$pe satellite moves in a geosynchronous orbit with an orbital
form the initial conditions of the multibody system equations. period of 86,400 seconds and a rotational angular veloeity

4.2 System Forces. Newton used Kepler's first two laws to =27/86400rad s*, allowing equipment to be continuously fac-
show that they implied his Law of Universal Gravitation. Kepler'dnd a fixed location on Earth. The satellite veloaityt perihelion,
First Law (a planet orbits the Sun in an ellipse, with the Sun 48 found using

one focus of the ellipgeand Kepler's Second Lava line con- GMg(1+e)| 2
necting a planet to the Sun sweeps out equal area in equal time v=——| , (5.1)
interval9 are derived i 38]. For details and proofs of the relation a(l-e)
between Kepler's Laws and Newton's Law of Universal Gravitayhere the semimajor axi is given by
tion, seg/40]. The magnitude of the gravitational force is 2 13
G(Mg+MgyP
Fc”: 2 (4.6) ™

Pij the orbital periodP is 86,400 s, the eccentricig=0 for a geo-
the gravitational constan&=6.672<10 *mikg 's 2 m;, i synchronous orbit and the radial distance of an orbiting body at
=1,... NB, are the masses,_ is the position vector joining the perihelion isr=a(1—e). The angular coordinates of the satellite

center of masses of the bodies concerned. are given by Eq(2.1) where the angle through which the satellite

The points on the bodies between which the gravitational forégtates about its axis of rotation &= wt rad.
is acting are the centroids of the bodies, hence the local position! "€ constraint equations to be augmented to the system equa-

vectorsu, andu, of these centroids are identically zero; centroitlo"'S are given by Eq(2.3, where® is the vector of Euler pa-
i g X rameters introduced in Section 2. Constraint compliance investi-
dal body coordinates are used. From the modeling performed

[9], [10], and[4] the generalized forceQ,, and Q, acting on dgted here involves checking the following equality:
bodiesi andj are, respectively, [C(g,t)—C(q,0)||=0 (5.3)

Table 2 Constraint compliance norms, for differing values of RTOL over time

t = 50 days t = 100 days t = 200 days t = 360 days
RTOL = 107 0.001 104 155 8 0.000 346 266 7 0.003 679671 1 0.297 395551 8
RTOL = 107" 0.000 000 002 3 0.000 000 004 7 0.000 000 357 8 0.000 000 941 8
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Fig. 3 Planetary trajectories for 365 days x10°

Fig. 4 Satellite periodicity about Earth

for the duration of the computation. Table 2 indicates the value of
the norm shown in Eq5.3) after a time interval.

If Xapp IS the approximate value of a variable whose true value ) . - . .
e bp The final positions and velocities of the ten major planets is

is x,; then[41] indicates that the absolute errordg,=Xapy X recorded after 200 and 360 days of computation and are shown in

and the relative error i8,e/= (Xapp— Xir)/ Xy, . Given the value of
the relative error tolerance parameter RTOL, one can determﬂ:n bIe 3. Computation began at Julian day 2450840.5 and after

the absolute error tolerance parameter for bbely 0 days at Julian day 2451040.5 and after 360 days Julian day
2451200.5, the accuracy of the computed data, coincident with
ATOL=RTOL(R,;+R,, i+ R, )2 (5.4) that of the Astronomical Almanaf28] is shown in bold. The

initial conditions for position and velocity are given to seven sig-
whereR, i, Ry ;, andR,; are the heliocentric rectangular equanificant figures in the Astronomical Aimang28], but the masses
torial coordinates of the center of mass of thie planetary body. used are given at worst to only four significant figures. Hence the
Figure 3 shows the planetary trajectories for the Sun, Mercurg¢ccuracy reached by the softwdvieltibody Systens satisfactory
Venus, Earth-Moon barycenter, and Mars for 365 days, computgiven the data used.
with a time-step size of 1000 seconds. The sidereal orbital perioddn order to reduce numerical inaccuracy in the computation, one
(yearg provided by[38] are: Mercury 0.2408, Venus 0.6152,should divide the system equations by the body mmassr the
Earth 1.0000, and Mars 1.8809. The periodicity of the inner plapody inertia tensol »4; since it is a diagonal matrixuniform
ets is shown and it may be observed that the Sun is pulled awgpherical bodies have been ugseBquation(2.8) indicates the
from its initial position by the other orbiting bodies. dynamics of the position and angular components as a system of
The periodicity of the satellite is shown in Fig. 4 to be 24 hourdifferential algebraic equations.
over a five-day time interval. The position of the satellite with One may also note that for certain values of time and angular
respect to the Earth is clearly sinusoidal in sh@ndy-coordinates velocity w, the submatrixmg,; may not be invertible and hence
but grows linearly in a sinusoidal fashion in te€oordinate; this the mass matriv; alone, may not be invertible, although the
is predominantly due to the force of the sun. The satellite Eulebefficient matrix shown in Eq2.9 is still invertible. The fol-
parameterg),= cos(®/2) and¢93—v3 sin(d/2) show the rotation of |owing matrix inversion technique for the computation of the sys-
the satellite about its axis of rotatiom and are sinusoidal as tem equations may not be used since it requires that the upper left
expected; the angular velocity= » and hencef= wt. block A, be invertible for all time.

578 / Vol. 67, SEPTEMBER 2000 Transactions of the ASME



Table 3 (a) Heliocentric coordinates
Heliocentric coordinates

<

(AU) and velocity components
(AU) and velocity components

(AU d™) of orbiting bodies at Julian day 2451040.5;

(AU d™%) of orbiting bodies at Julian day 2451200.5

(b)

R, R, R, R, R, R,
Mercury +0.3265888 | -0.1926032 | -0.1367292 | +0.0107188 | +0.0218661 | +0.010568 5
Venus ©0.0395222 | +0.6541097 | +0.2967807 | -0.0202622 | -0.0015838 | +0.000 569 8
Earth-Moon | +0.7983154 | -05724126 | -0.2481798 | +0.0103158 | +0.0123756 | +0.0053654
Mars -02835309 | +1.4229709 | +0.6603405 | -0.0132347 | -0.0013155 | -0.0002455
Tupiter +4.8987098 | -0.7380013 | -0.4356998 | +0.0011940 | +0.0071751 | +0.003046 5
Saturn +8.2304253 | +4.1267699 | +1.3504826 | -0.0028873 | +0.0045168 | +0.0019898
Uranus +13.0127832 | -13.6872890 | -6.1788429 | +0.0029467 | +0.0022141 | +0.0009279
Neptune +15.4870396 | -23.7903057 | -101231305 | +0.0026757 | +0.0015414 | +0.000 564 4
Pluto 113909828 | -27.3728349 | -5.1080772 | +0.0029788 | -0.0012776 | -0.0012945
(a)

R, R, R, R, R, R,
Mercury +0.0337322 | -04048248 | -0.2196641 | +0.0224239 | +0.0038867 | -0.000249 1
Venus +0.7145505 | -0.1043450 | -0.0921343 | +0.0035864 | +0.0181362 | +0.0079323
Earth-Moon | -0.5132332 | +0.7698209 | +0.3337428 | -0.0149472 | -0.0083039 | - 0.003 600 3
Mars -1.6413707 +0.1987488 | +0.1355467 | -0.0014662 | -0.0115214 | -0.0052448
Jupiter +49370561 | +0.4209367 | +0.0601352 | -0.0007206 | +0.0072367 | +0.0031195
Satumn +7.7302947 | +4.8287757 | +1.6619502 | -0.0033604 | +0.0042506 | +0.001900 2
Uranus +134779090 | -13.3264725 | -6.0274117 | +0.0028668 | +0.0022956 | +0.0009647
Neptune +159129919 | 235403877 | -10.0314193 | +0.0026485 | +0.0015824 | +0.0005819
Pluto 109128005 | -27.5734428 | -5.3144881 | +0.0029982 | -0.0012299 | - 0.0012855
(b)
Bl"! A '+EAIF —-EA! shows that with a relative error tolerance of 8 the norm is
D} _[ AL AL (5.5) less than 10° after 360 days of simulation. Future work may

whereA=D—CA 1B, E=A"1B andF=CA !, see[43], [44],
and[45] for additional matrix theory.
One should also be aware that there are four Euler parametdéosthe data.

that is, four angular generalized coordinates per body and there
should be no more angular constraint equations per body thRferences

there are angular coordinates per body in order to avoid a dime

sionally inconsistent system of equations.
Future work may involve including the moons of Mars, Jupiter, [2] Nikravesh, P. E., 1988Computer Aided Analysis of Mechanical Systems

Saturn, Uranus, Neptune, and Pluto, larger bodies of the asteroid Prentice-Hall, Englewood Cliffs, NJ. )

belt, nutations and librations of the major planets, and a largd3] Shabana, A. A., 1988ynamics of Multibody Systemiohn Wiley and Sons,

involve increasing the system size, computing nutations and libra-
tions of the major planets, and using optimal control to allow
better fitting of the system parametéesg., masseof the model

n[-1] Haug, E. J., ed., 198€omputer Aided Analysis and Optimization of Mechani-
cal System DynamiddNATO ASI Series, Vol. F9, Springer-Verlag, Berlin.

New York.

artificial satellltt_e communication network. Optimal control ‘May (4] shabana, A. A., 1994omputational Dynamicsohn Wiley and Sons, New
be used to obtain better estimates of masses; for example, in order vork.

to improve the fitting of the model to any accurate sightings madd5] Ryan, R. R., 1990, “ADAMS—Multibody System Analysis Softwareulti-
aftert=0, using techniques if46].

6 Conclusions

The principle of virtual work and Lagrange’s equations were
used to obtain a differential equation representing the spatial dy
namics of an orbital multibody system. The inherent constraints
involved in this formulation and the additional constraints defin-

body Systems HandbqoBpringer-Verlag, Berlin.
[6] Adams Internet Site, http://www.adams.com/
[7] Smith, R. C., and Haug, E. J., 1990, “DADS: Dynamic Analysis and Design
System,” Multibody Systems Handboo8pringer-Verlag, Berlin.
[8] Lupker, H. A., de Coo, P. J. A, Nieboer, J. J., and Wismans, J., 1991, “Ad-
vances in MADYMO Crash Simulations,” Internal Report 910879, TNO
_ Road-Vehicles Research Institute Delft, Delft, The Netherlands.
[9] Fox, B., Jennings, L. S., and Zomaya, A. Y., 1999, “Numerical Computation
of Differential-Algebraic Equations for Nonlinear Dynamics of Multibody
Systems,” submitted for publication.

ing system structure were augmented to the differential equatiohl Fox, B., Jennings, L. S., and Zomaya, A. Y., 1999, “Numerical Computation

to form an index 3 DAE. The twice differentiation of the con-
straint equations allowed the DAE to be cast as the underlying

of Differential-Algebraic Equations for Nonlinear Dynamics of Multibody An-
droid Systems in Automobile Crash Simulation,” IEEE Trans. Biomed. Eng.,
46, No. 10, pp. 1199-1206.

ODE representing the orbital/planetary motion. The numericghi] Simeon, B., Fuhrer, C., and Rentrop, R., 1991, “Differential-Algebraic Equa-
computation of the system equations was performed using the tions in Vehicle System Dynamics,Surveys on Mathematics for Industry

softwareMultibody Systemwhich incorporates the variable accu-
racy integrator LSODAR20]. The resulting generalized coordi-

Springer-Verlag, New York.
[12] Brennan, K. E., Campbell, S. L., and Petzold, L. R., 1989merical Solution
of Initial-Value Problems in Differential-Algebraic Equatign&lsevier, New

nates and their time derivatives form the planetary ephemerides vork.
and artificial satellite trajectories and it was shown that accurady3] Ascher, U. M., and Petzold, L. R., 1992, “Numerical Methods for Boundary

of computation is within a range of three to five significant figures
of the data provided by the Astonomical Almanac after simulation

Value Problems in Differential Algebraic EquationdRecent Developments in
Numerical Methods and Software for ODEs/DAEs/PP&sD. Byrn and W.
E. Schiesser, eds., World Scientific Publishers, Singapore.

times of 200 and 360 days. Tabulated constraint compliand@4] Byrn, G. D., and Schiesser, W. E., 1992, “An Overview of Recent Develop-
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[15] Gear, C. W., 1991, “An Introduction to Numerical Methods for ODEs and Planetary Ephermerides of the Astronomical Almanac,” Astron. Astrophys.,

DAEs,” Real Time Integration Methods for Mechanical System Simulation 233 pp. 252-271.

(NATO, ASI Series, Vol. F69 E. J. Haug, ed., Springer-Verlag, Berlin. [31] Standish, Jr., E. M., 1990, “An Approximation to the Outer Planet Ephermeris
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Postdoctoral Fellow, For elastoplastic trusses under quasi-static cyclic loading, a method is presented for
g-mail: araki@archi kyoto-u.ac.jp finding the steady-state limit that bounds the plastic shakedown and ratchetting regions.
In the plastic shakedown region, an assumption employed in the previous approaches for
Graduate School of Engineering, finding the steady-state limit can be invalid in many circumstances. Although strain re-
Kyoto University, versals were assumed to occur only at load reversals, yielding of an element exhibiting
Sakyo, Kyoto 606-8501, Japan plastic shakedown may cause strain reversals in other elements. This difficulty is over-
come by relaxing this assumption so that the strain reversals due to yielding are taken
into account. Numerical examples showed that the present method can find the steady-
state limit even when strong effects of geometrical nonlinearity exist.
[S0021-893600)01201-0
1 Introduction and numerical approaches require a number of parametric analy-

Hgs to bound the structural responses. Moreover, it is very difficult

sequent cyclic loading, its response is classified as follaes, to de.nve a theoretical cond{tlon similar to that for théastic

for instance[1—4]); (1) convergent behavior to thelastic shake- PUckling load[10] or the plastic collapse load11] from the re-
down (ESD) or the classical shakedowrwhich is a cyclic and Sults of the parametric analyses. )

fully elastic response after some histories of plastic deformations;AS & theoretical approach, the classisakedown theorisee,

(2) convergent behavior to thglastic shakedowriPSD or the €.9.,[1,4]) is well known. With the shakedown theory, we can
alternating plasticity where a structure behaves cyclically andound the ESD region regardless of loading histories. The classi-
plastic deformations are included in its steady cycle; é8)dhe cal shakedown theory is extended to the PSD region in several
ratchettingor theincremental collapsein which plastic deforma- paperd12-13. In these studies, the effect of geometrical nonlin-
tions grow with respect to the number of loading cycles. If excegarity is completely neglected. A few papd&16] were pub-

sive deformations are induced by the ratchetting, the effect lidhed concerning the shakedown limit taking geometrical nonlin-
geometrical nonlinearity becomes significant and total or locahrity into account. However, these path-independent shakedown
buckling may occuf5-8]. Including these cases, as called in outheories are not promising when geometrical nonlinearity has a
earlier work[9] the phenomenon characterized by the unboundegong influence on structural responses because the shakedown
growth of plastic deformations is referred to @glic instability |imit is inherently path-dependent in this case.

(CI) in this paper. Classification of these types of behavior is 1o gvercome this difficulty, Uetar{il7] proposed thesteady-
schematically illustrated in Fig. 1, whewg and ), indicate, re- ?ate limit theoryfor cantilever beam-columns. Under cyclic

When a structure is subjected to initial constant loads and s

spectively, the amplitude of cyclic loading and the magnitude ending wi : ; ; ; ;

- ; . g with continuously increasing amplitude in the presence of
constant loads. The regions in which the ESD, PSD, and ClI take . - )
place are called the ESD region, the PSD region, and the Cl § compressive axial force, a beam-column converges to a steady

ion. The boundary between the shakedown regions and the ate unless the loading amplitude reaches a certain limit. If the
?egién is referred t())/ as the shakedown limit 9 lIoading amplitude exceeds this limit, the beam-column exhibits

To design structures that may suffer plastic deformations undf C!- This limitis called theteady-state limitSSL). In the SSL
cyclic loading, it is very important to obtain the shakedown limitth€ory, the variation of a steady state with respect to the loading

For this reason, a number of studies have been conducted 3Rplitude is regarded as a continuous path, calledtibedy-state
structural responses under quasi-static cyclic loading. The d#th And the SSL is found as the first limit point of the steady-
proaches employed in these studies are roughly divided into twtate path. With the SSL theory, though under a specified loading
categories: one is to trace all loading histories and the other ishistory, the shakedown limit can be predicted theoretically even if
find the shakedown limit theoretically without tracing the entirstrong effects of geometrical nonlinearity exist. Furthermore, the
loading history. SSL is found very efficiently because only the variation of a
A direct approach for investigating elastoplastic responses isdteady state is traced and there is no need for tracing the entire
trace all loading histories. For this purpose, experimental, analylbading history including transient response. Note that the SSL is
cal, and numerical methods are availaf#¢ Tracing the entire a specific type of the shakedown limit defined for an idealized
loading history allows us to observe the detailed process of defeclic loading program with continuously increasing amplitude.
mations a_nd to find the loading condition below which a structure |n our earlier work9], the SSL theory has been extended to the
behaves in a stable manner. Nonetheless, generally, analytiggks structure, which is one of the simplest discrete structures. In
methods can be applied only to very simple models. Experimenigl nrevious work, however, the discussion was restricted only to
the SSL for the ESD region. The reason is stated as follows. In the

Contributed by the Applied Meclhan'ics I_Division OHE AMERICAN SOCIETY OF previous method, similar to the SSL theory for cantilever beam-
MECHANICAL ENGINEERS for publication in the ASME OURNAL OF APPLIED

MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Aug.clommns[lﬂr a steady state i$ represented by a set of the equilib-
14, 1998; final revision, Apr. 21, 1999. Associate Technical Editor: K. T. Rameshium states at load reversals in order to trace the steady-state path.

Discussion on the paper should be addressed to the Technical Editor, Profespﬁris representation is based on the assumption that strain rever-
Lewis T. Wheeler, Department of Mechanical Engineering, University of Houston

Houston, TX 77204-4792, and will be accepted until four months after final publf§aIS OCCU.I’ only at load .reversals' AlthQUQh. this assum.ptlon holds
cation of the paper itself in the ASMEDWRNAL OF APPLIED MECHANICS. in most circumstances in the ESD region, it does not in the PSD
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Fig. 1 Classification of the response in a plane of loading Fig. 3 A bilinear kinematic hardening rule
combinations
de
fi=ALyo —, 4)

region. This is because, in the PSD region, not only load reversals au;

but also yielding of the element exhibiting the PSD can cause . ) . .

strain reversals. in which f; is the nodal forceA is the cross-sectional area, and
The objective of this paper is to present a method for predictirig e second Piola-Kirchhoff stress. By assembling the equilib-

the SSL of elastoplastic trusses that bounds the PSD and CI {fgm equation for the element, we obtain the equilibrium equa-

gions. In this paper, first, governing equations are shown for eldi@ns for the total system. o _ _

toplastic trusses. Second, the hypothesis in the previous ap/'S & constitutive model, we employ a bilinear kinematic hard-

proaches is relaxed so that the strain reversals due to yielding §19 rule shown in Fig. 3. LeE, E;, oy, and ¢, indicate

taken into consideration. Third, based on the relaxed hypothesf@ung's modulus, the tangent modulus after yielding, the initial

we derive new incremental relations for the variation of a stead{e!d stress, and the plastic strain, respectively. Then the subse-

state with respect to the loading amplitude. In numerical eXlUent yield stresses, and o, in tension and compression are

amples, the validity of the present method is demonstrated ByjPressed as

comparing the results of the SSL analysis with those of the re- EE, EE,

sponse analysis. In the SSL analysis, the SSL is found according Uyt:ﬁsp-i- ay,

to the present method. In the response analysis, on the other hand, t

the entire loading history is traced using a conventional numericehe stress-strain relations are expressed as follows:

method[18,19. Furthermore, we discuss the effects of both geo-

UVCZE—_Etsp_Uy' (5)

metrical nonlinearity and loading histories on the shakedown o=E(e—gp), for oy<o=<oy, (6)
limit. 0'=E[e+?y, if o=0y, @
o=Eg—oy, if o=0y, (8)

2 Governing Equations whereo, is defined asry=(1-E;/E)o,.
2.1 Analytical Models. Consider a pin-jointed space trusses . - . -
with M elemgnts antl nodes. Assume Iaege]displaceenents—small 22 Loading Conditions. The trusses are su.bjecte(_j o |n|t!al
strains. In the present truss model, buckling of a single element-iNStant loads\,P, and subsequent quasi-static cyclic loading
ruled out, but that of a global type is taken into account. The totAtPc- Here, A and P denote the load factor and the constant
Lagrangian formulation(see, e.g.,[18]) is used to measure vector with N components, respe_ctlvely. The subscripts 0 and
stresses and strains. As illustrated in Fig. 2, compatibility condpdicate the quantities corresponding to the constant loads and the

tions for an element are given by cyclic loading. According to the boundary condition, either the
. nodal force or the nodal displacement is specified for every com-
_Lo-Lg 4y Ponent of bottPy andP .
Tz 1" The load facton, varies between the maximum valug=

5 5 ) 5 and the minimum value'c' =— ¢ in a cycle, whera) denotes the

L= (%= X0) "+ (Xs=X2) "+ (Xg—X3)", () amplitude of\.. Variation of \, is defined by a monotonically

Xi:xio+ui ©i=1.....6, ©) increasing parz_i_me_tercalled time or t.he equlilibrium path”param-
eter. The equilibrium states at which,=\, and A.=\. are

wheree is the Green-Lagrangian straib,andL, are the current called thel™' state and th&'"' state, respectively. The superscripts
and initial lengths of the elementy is the nodal displacement, | and|l indicate that state variables, such as stresses, strains, and
andx; andx? indicate the current and initial positions of the nodesiisplacements, refer ' andI'"'. Though the loading conditions
at the two ends. For equilibrium, we require given here are very simple, more complex loading conditions can
be treated in the present theory. For example, the absolute values
of AL and\! can be different.

(X1 %5, %5 ) 2.3 Cyclic Responses in a Stress-Strain PlaneFor later
formulation, we classify all possible types of cyclic responses in a
stress-strain plane. The classification is schematically illustrated in

Current Configuration

EA L

Xy, %5, %, ) /’(Uu Up, Uy ) Fig. 4. The superscriptsandc indicate the quantities belonging to
/ the equilibrium statel" andI"® at which the strain takes its maxi-
(U Uz, us) EA L ' X% mum and minimum values in a cycle, respectively. Type E is the
/‘f x5 g ) ESD response whose stress moves within the ramge<o
7. x2. %3 ) Initial Configuration % <oy,. If the plastic straire,, satisfiese,=0, Type E is a purely
! elastic response, and it is an unloading response otherwise. Type
Fig. 2 The positions and the nodal displacements at the two T is the ESD response whose stress reaahgs or '=oy;.
ends of a truss element Type C is the ESD response wheré=o.. Type P is the PSD
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o, TypeT TypeP the ESD region([9]). Then a general consideration is made on

_________ I strain reversals. Based on this consideration, the hypotheses are
T 7) relaxed and the key concepts are shown for finding the SSL for
; f/ the PSD region.
Nl
// % Iy // // 3 3.1 The Steady-State Limit(SSL) Theory for the Elastic
N Shakedown (ESD) Region. The fundamental concepts of the
B SSL theory are summarized as follows:

® €°.0% O ¢',oY
Type © Type E 1 A steady state is represented by a point in a special space.

Fig. 4 Classification of all possible types of the cyclic .Thls space IS .Ca”ed theteady-state spacand is schematically
response illustrated in Flg. 6.. . . .
2 Under an idealized cyclic loadingCL) program with con-
tinuously increasing amplitude, the sequence of these points is

op (P, oPW) regarded as a continuous path, called the steady-sate path.
e QT 3 The SSL is found as the first limit point of the steady-state
/ path.
(€*,0") In the ICL program, the loading amplitudg varies continu-
€ ously with respect to the steady-state path paramet€he load-
f (e*, o%) ing cycle is repeated as many times as necessary for a structure to
__________ converge to a steady state at each leve{yafs shown in Fig. 7.

BY) 5B More rigorous definition of the ICL program was given by Uetani
(e"7,67) and Araki[9].

In the previous method, the variation of a steady state with
respect tor was formulated in terms of the state variables at load
reversals based on the following hypotheses:

(H2*) All the state variables foF' andI"" are continuous and

piecewise differentiable functions af
response. Throughout this paper, the elements exhibiting Types E¢H3*) For all elements, strain reversals occur only abr I'"'.
C, T, and P are called the E-element, the C-element, thenote that (H3) is applied not to the transient response but to

T-elemen_t, and th_e P-eler_n_ent', respectively. ) ) the steady-state response after convergence.
According to this classification, stress-strain relations are for-

mulated for each type of the cyclic response. Let the superseript 3.2 The Steady-State Limit(SSL) Theory for the Plastic
indicate the state variables referring to an arbitrary equilibriuhakedown(PSD) Region. In the PSD region, as mentioned in
stateI'* in a steady state. And let the supersciiiff) indicate the Introduction, hypothesis (Fi3 dose not hold in many circum-
the quantities for the equilibrium state at which the last unloadirglances. To deal with this difficulty, let us consider why strain
occurs beford™* as shown in Fig. 5. Then we can express theeversals take place in the present truss model. If the relation
stresso* in terms of the strains*, &!, £°, ands?®) as follows: between strairz and the equilibrium path parameteis linear in
every element, no strain reversals can occur. On the other hand,

Fig. 5 The equilibrium state T'#® at which the last loading
occurs before I'#

Type Eo*=E(e"~ep), (9)  strain reversals are possible if the relation is nonlinear. Obvi-
Type Tit=Eet+a,, if oh=gt, (10) ously, this relation is nonlinear in the present model. The sources
o#=Ee*—(E-Epe'+ay, if o*#d", (11)
_ v v ssL
Type Co#=Ee*—(E—Ep)e—0oy, if o#*#0°% (12 [ SU—— -

Steady-State

Corresponding
Response

Steady State

ot=Eit—o,, if o¥=0°, (13)
Type Po*=Eie**o,, if a'=0of or o"=ol;, (14)
ot=Eet—(E-E)efWx0y, if of <o'<o},. (15)

Note that plastic strains are eliminated in obtaining Edd),
(12), and(15). Let us show an example of this elimination. The
stressegrt and o are written as

Transient
Response

o'=E(s'~ Slp)v ot= E(S’L_Sﬁ)a (16) Fig. 6 Fundamental concepts of the SSL theory: (a) the equi-

since Hooke's law equatiof6) holds in any equilibrium states. iPrium state space and  (b) the steady-state space
From the definition of Type T,

o'=Ee'+0y. a7

In an ESD response;, is constant throughout a cycle and we
have

8;):85' . 18 ==
Eliminating e:) andey from Egs.(16)—(18), we obtain Eq(11).

Mo : ' he

3 Fundamental Concepts

In this section, first, we summarize the fundamental concepty. 7 (a) The ICL program and (b) the loading process at each
and the hypotheses in the previous method of finding the SSL famplitude level
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@ T (u=3-J) whereF andU are the nodal force vector and the nodal displace-
r" v r' v ment vector with 3l components, an&, E,, andS denote the
strain vector, the plastic strain vector, and the stress vectornWith
components. Here, recall th and N are the numbers of the
Steady-State elements and the nodes. To determine the state variables at the
Response neighboring steady state, we must determine the step lekhgth

v, U and compute the derivatives of the state variables. In the follow-

/ ing subsections, the formulation for obtaining these quantities is
Ui Ui shown.

FEEFH FWEFI

Fig. 8 Key differences between (&) the previous method and 4.2 Rate Forms of Governing Equations. We formulate

(b) the present method the rate forms of the governing equations for the total system.
Differentiating the compatibility condition€l)—(3) and the equi-
librium condition (4), we have the rate forms of these equations

of this nonlinearity are classified as follow&) nonproportional for an element as

loading or cyclic loading{2) material nonlinearity, e.g. yielding;

and(3) geometrical nonlinearity, or nonlinear strain-displacement .ﬂ_ﬂs”. u

relations. In this study, the strain reversals due to geometrical & *au—#Ui ' (24)
nonlinearity are not considered since they are much less likely to '

occur than those due to material nonlinearity or nonproportional . - det Pet

loading. fi'=AL, U’LW‘FU"W#&U# uf* | (25)

Based on the above consideration, {H2and (H3') are re-
laxed so that the strain reversals due to yielding are taken int@roughout this paper, the summation convention is used only for
consideration: subscriptg, j, andk that varies from 1 to 6. As shown in Appen-

(H2**) All the state variables for the equilibrium states adix A, the rate forms of the stress-strain relations are expressed as

which strain reversals occur are continuous and piece-
wise differentiable functions of.

(H3**) For all elements, strain reversals occur only at load

reversals or at the yielding of P-elements. o _ _

Similar to (H3),(H3**) is applied not to the transient re- Substituting Eqgs(24) and(26) into Eg.(25), we obtain the nodal

J
ah=> DME?. (26)
v=1

sponse but to the steady-state response. force rate-nodal displacement rate relations for an element as
Based on these relaxed hypotheses, a steady state is represented 3

by a set of equilibrium states at which yielding or a load reversal fro 2 KAV

occurs. The key difference between the previous and present e TR

methods is shown in Fig. 8. In this paper, the equilibrium state for

representing a steady state is calledréggresentative equilibrium J Jet ge? JReh
stateor RES. In the RESS, andI'? are defined in such a way Ki'=ALo >, D= 7g7 T ALoduo”
that they correspond respectively to the equilibrium st&feand vt ' !
I'". Once a steady state is represented by a set of the RE{Reres,, is Kronecker's delta ankl/t” is the coefficient relating
similar to the previous method, the steady-state path is traced iRl@1q 4. By assembling Eq(27), we obtain the nodal force

step-by-step manner. And the SSL is found as the first limit poiplte nodal displacement rate relations for the total system
of the steady-state path. Note that, in the SSL theory, we trace

aupaur @0

only the variation of a steady state with respect to the loading ) J )

amplitude and that no equilibrium paths are traced. Fr= 2 K#ry?, (28)
v=1

4 Formulation whereK*” is the coefficient matrix ofJ”.

4.1 Incremental Relations for Variation of a Steady State. ~ NOW we havelX 3N equations that relaté to U*. Substitute

Consider a steady state at 7, represented by a set 6fRESs all the components of “P. into Eq. (28) according the boundary
current steady state at=r,, our problem is to find those in the Here, it should be noted that* (u=1,---,J) are regarded as
neighboring steady state at 7, = ,+Ar. Let the dot indi- unknowns as well as thdxX3N unknown components of the
cate differentiation with respect to Then, owing to (H2* ), the nodal force rates and/or the nodal displacement rates. To deter-
state variables at=7,,; are expressed with the Taylor seriegnine all these unknowns, additiondlequations are needed to-
expansion as gether with Eq.(28). The additional equations are given by the
1 conditions that characterize the RESs. Since the first two RESs are
: - defined as the equilibrium states at load reversals, the conditions
“ — U~ g +_Um 2. . . . !
V() = U ) U ) Art 5 UR(m) AT 19 g Al and\? are written as

_ 1 S -
FA (i) =FA(m) + FAm) A+ SER(m) AP+, (20) K= Ae=—. (29)
The remaining RESE# (n=3) are characterized by the yielding
of P-elements. As shown in Fig. 9, the equilibrium sthté is

. 1.
BX(7hi 1) =B¥(mn) +EX(mn) AT+ §E”(Th)ATZ+"' » (21)  characterized by one of the following conditions:

) 1. 2 oh= O.B(/L), gt= B + 20.y ) (30)
EX( 7)) =ES(m) FEL(T) AT+ s EX(m) AT+, (22)

PRIl EpR TR Tpt 2P h With 4=¢5*) and Hooke’s law equatiot6), differentiation of
every equation in Eq30) yields the same rate relation

. 1,
S 7hy1) =S (1) + S () AT+ = ST AT+, (23) sk B, (31)

2
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Fig. 10 (a) The transition from the elastic range to the strain
hardening range and (b) the transition from the straining hard-
ening range to the elastic range

Table 1 The numbers of equations and unknowns

Number of Equation Number of
Derivatives unknowns number equations
Fe, e JIX3N (28) JX3N )
)'\1_7 N2 2 (29 2 SS(ThH)—Sp ¥ (mh+1)=0. (38)
W J-2 (33 J-2 . ., -
Total J(3N+1) total J(3N+1) 4.4 Steady-State Limit(SSL) Condition. Substituting the

derivatives and the step length into E¢s9)—(23), we obtain the
state variables at the neighboring steady state. Repeating these
procedures, we can trace the steady-state path. As shown in Fig.
b), the SSL is characterized as the first limit point of the steady-
ate path with respect to the loading amplitudéThe SSL con-
dition is therefore given as

et © Gt B(w) s<0 39
wui ~ P i =0. (32) $=<0. (39)

Condition(31) is expressed in terms of the nodal displacements gt
an element as

. ) ) ) For finding the SSL, a procedure similar to the displacement con-
Condition (32) can be rewritten in terms of the nodal displacetro] schemeq18,19 is employed. More details of the present
ments for the total system as method are shown in Appendices B, C, and D.
LAUS+ Lﬁ(”)UB(”)=O, 33 )
(33) 5 Numerical Examples

In this section, the validity of the hypotheses in the present
o thod is discussed. And it is studied how the shakedown limit
flianges when different types of loading histories are applied. In
¢ afdition, we examine the effect of geometrical nonlinearity on the
of . shakedown limit. For these purposes, we perform the SSL analy-

4.3 Termination Conditions for Incremental Steps. In Sis and a conventional response analysis, in which the entire load-
tracing the steady-state path, an incremental step should be teriftg history is traced.

nated at the steady state where the types of stress rate-strain rageq Steady-State Limit (SSL) Analysis. The present

relations change. In addition, the step Iengthshould be _small method is applied to the two-bar and ten-bar plane trusses whose

enough to prevent an excessive accumulation of truncation errOégD boundaries were obtained by Uetani and Afag]. Figure

Hen;eAr is determined as the S”.‘f”‘”eSt value among _the Valuﬁ shows the initial shapes, the boundary conditions, and the load-
obtained from the following conditions and the specified maxi-

mum allowable value\ 7.
For each E-elementAr is calculated with the following

conditions: WU, oo
t t ® g
o' (Ths1) = 0hi(Ths1) =0, for E-T, (34) (1= @ 8 :[

0%( s 1)~ 0% Ths1) =0, for E—C. (35) o g e .-

Here, in the linear approximationr(r,+1)~o(7m,)+o(m)AT
and other variables are expressed similarly. Note ﬂ{,’;}(rh)
=ir‘yt(rh)=0 in E-elements. For all E, T, and C-elements, the ()

wherelL is the coefficient matrix ofJ, andO0 is the zero vector.
With these equations together with E@8), the number of the
equations becomes identical to that of the unknowns as show
Table 1. These equations are to be solved by specifying the va

N o - . H, = 800cm
condition for the transition to Type P is written as " l o0em T a00e 1
o (Thiy)— 0%(The)— 20,=0. (36) XV 1 (1) 2 (6) 3 *oFo
For P-elements, as illustrated in Fig.(ap the conditions for the ' X
transitions from the elastic range to the strain-hardening range are § ) (10)
written as 3
o (Thr1) = oy The1) =0, 0*(Thi1) = 0§(Thi1) =0. : = ; A ;t}“)':‘)
(37) 4 5 R
Us A
The condition for the transition from the straining hardening range
to the elastic range shown in Fig. (b is given by Fig. 11 (a) The two-bar truss and (b) the ten-bar plane truss
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Fig. 14 The SSL and the results of the parametric response
analysis
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Fig. 12 The SSL for (a) the two-bar truss and (b) the ten-bar

truss with an incremenrAEfrom zero to a specified valugmax, and

then ¢ is fixed aty in the following cycles. In the STIDAD

program, i is fixed at a constant valug throughout the loading

ing conditions of the trusses. When the previous method was %cles. Note that the loading history of the STIDAC program

plied directly to these trusses, it failed to find the SSL for the PS. comes.closer to that (.)f the ICL programMagis made smalle_r.
region. he details of the solution method for the response analysis and

The numerical data for these trusses were given as follows. TW@ criteria for convergence are exactly the same as those shown

A by Uetani and Arak(9].
cross-sectional areas of the two-bar truss werg=1 cn? and ; .
First, we performed the response analysis for evey¥\, un-
A=2 cn?. Those of the ten-bar truss were as followgy, P ponse y Iy un-

B — _ - - = = der the loading conditions ¢,=(1£0.001)/, Ay
:fé“;f_A(S)_ dllAC”?_' AA<2_>1A<3 _é'lCf'thAt(G)_A@)_A(th). | =0.00y, and y=(1+0.001))y. Under the STIDAC pro-
—-oen, and Aagy=ig=- ¢ ? or both_Trusses, materalgram, good agreement was observed between the results of the
properties  were E=1.961x10°GPa, E=00IE, 0y gg| and the response analyses: convergence was observed in all
=2.942< 10> MPa. When only initial constant loads were ap i i

) S . ; -
plied, buckling loads in the sense of HjL0] were \,=0.7477 cases whenjimaysqi; and divergence was obtained ffma

. . From th results, it m hat the h h in
and 40.38 for the two-bar and ten-bar trusses, respecnve&l/jss' om these results, it may be stated that the hypotheses

Throughout the SSL analysis, higher-order terms were employ proposed method are verified. On the other hand, the results of
up to the second ordésee App;endix B The values of the maxi- response analysis under the STIDAD program did not always

lowable step length - AT ~0.05 and 0.2 f coincide with the results of the SSL analysis. In the ten-bar truss,
tmhgTw%-g\;v?anedSt:rP-bZ?gt]rusgngé V\;gg%ecﬁrt?‘\fé& 0> and L. for convergence was obs_er\{ed in spite of the conditi&_m Pssl-
Figures 12a) and (b) depict thé results of thé SSL analysis. | These results clearly indicate that the shakedown limit for the

Nen-bar truss is path-dependent
the SSL analysis, the normalized load facdqy/\y, for initial Lo .
X . To study how the shakedown limit changes when different
constant loads were changed parametrically between 0 and 1 . s . ! .
the increments of 0.005 and 0.01 for the two-bar and ten-\l;\{ es of loading histories are applied, we carried out a parametric

trusses. These figures illustrate the value of the loading amplitu@@2!ysis in which not only, but alsoy in the STIDAD program
oy at the SSL predicted for eadhy /\,, . are changed. The load facteg of the constant load was changed

in the same manner as in the SSL analysis. The normalized am-
5.2 Response Analysis. Entire loading history was traced plitude ¢/H,(x 10" %) was changed from 0 to 25 with the incre-
under two typical cyclic loading programs shown in Fig.(L8]). ment of 0.25. Accordingly, we performed the response analysis
The STIDAC is a forced displacement program where the amptor 100x 100 different combinations ofAG, ). The result of the
tude ¢ of the forced displacement is increased every half cyclgarametric analysis is illustrated in Fig. 14. The darker and lighter
gray circles indicate the convergence to the PSD and ESD, respec-
tively. It is worth noting in Fig. 14 that the SSL gives the lower

B (a) o (b) bound of the shakedown limit obtained under the STIDAD
- N program.

E b3 t One might think that the shakedown limit obtained by the con-
Llay Voo & 0 ventional shakedown theory, where perfect plasticity and small
3 § displacements are assumed, is close to or conservative to the SSL

in Fig. 12. Nevertheless these approximations, especially the as-

Fig. 13 The cyclic forced displacement programs: (a) STIDAC  sumption of small displacements, can lead to a significant error.
and (b) STIDAD To show an example of this error we performed the response
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Us(x10°) Us (x10°) Appendix A
4 —_— 100

"+~ Nonlinear 105 Stress Rate-Strain Rate Relations. Consider the stress rate-
strain rate relations for the variation of a steady state. Suppose that
2 50 ‘ the following conditions are known during the incremental step
- Linear 105 defined bym,<7<7p,:
0 0 -‘W\/\/\NWW\ (C1) The number of the RESs.
i Linear 130 (C2) For every element, the RESs corresponding to the equilib-
) 50l 1\ rium statesI't and 'S, where strain takes its maximum
Linear 95 — @ . Nonlinear 130 and minimum values in a steady cycle. _
. Nonlinear 95— ol ® (C3) For every P-element, the RESs corresponding to the equi-
0o 5 10 15 20 25 o 5 10 15 20 25 librium statesT'#®) (x=1,2, ... ), where the last un-
Load Reversals Load Reversals loading occurs befor&'*.
Then, differentiating Eq949)—(12) with respect tor, we obtain
Fig. 15 The relations between Us and the number of load re- the stress rate-strain rate relations for the E, T, and C-elements.
versals for the ten-bar truss under  (a) ¥<tsy and (b) >ty The rate relations are expressed as
Fh=DHrgE+ DM DR, (40)

d'@_ere D#*, D*, and D¢ are the coefficients that are chosen

placements. In the assumption of small displacements we usedg ording to Table 2. For the P-elements, differentiation of Egs.
conventional linear strain-displacement relation. On the othe}#—(15) leads to

hand, the nonlinear Green-Lagrangian strain shown inBavas Gh=DHHgH 4+ DrBBW) (41)
employed in the assumption of large displacements. The response o

analysis was conducted far=95, 105, and 130 percent af., N Which D*# and D* are the coefficients that are selected ac-
under\o/\,=0.37. Figure 15 shows the results of the respon&@rding to Table 3. With the help of the conditiof@1)—(C3), we
analysis. Noting that thg scales are different in Figs. (@ and Ccan express the rate forms of the stress-strain relations in a general
(b), we can make the following two observatior{4) The error form

became significant ify> s while it was very small otherwise. J

(2) The assumption of small displacements did not give a conser- oh= E DA%, (42)
vative shakedown limit. Similar results were reported for cylindri- v=1

cal shells by Maier et al8].

analysis based on the assumptions of both large and small

where D#” is the coefficient ofe”. Note that, for all T and
C-elements, we should choose a set of the coefficients that are
6 Conclusions consistent with the signs of the resulting strain rates as shown in

] _ ) ) ) Table 2. For this purpose, we employ the trial-and-error procedure
For elastoplastic trusses subjected to quasi-static cyclic loadiygose details are shown in our earlier woe.

in the presence of constant loads, a new method has been pre-
sented for finding the SSL that bounds the PSD region and the &é)pendix B
region. Although strain reversals were assumed to occur only a
load reversals in the previous approaches, this assumption can bdigher-Order Formulation. Though only the formulation
invalid in many circumstances in the PSD region. In the presewith the first-order derivatives is shown in Section 4 for clarity
theory, therefore, the hypothesis on strain reversals has beenaied simplicity of the presentation, it is desirable to use higher-
laxed so that the strain reversals due to yielding can be taken imi@ler derivatives for more accurate approximations. For this pur-
account. Based on the relaxed hypothesis, we have derived ngwge, a formulation is presented for the SSL analysis with higher-
incremental relations for the variation of a steady state with rerder terms. Though we derive here the derivatives up to the
spect to the loading amplitude. With these incremental relationsscond order, the derivatives higher than the second order can be
similar to the previous approaches, the steady-state path is trackehined similarly. Differentiation of the rate forms of governing
in a step-by-step manner and the SSL is found as the first limit
point of the steady-state path.

Through numerical examples, the following findings have beerible 2  Stress rate-strain rate relations for an element exhib-

made for the two-bar and ten-bar trusses: iting elastic shakedown (ESD)

1 The results of the SSL analysis agreed very well with those E T C
of a conventional response analysis when the loading programs r " . —
employed in both analyses were close enough. This good agree- =0 e<0 e°<0 £°>0
ment shows the validity of the present method. P S =gt otteC

2 The SSL, defined for the ICL program with continuously
increasing amplitude, was conservative or close to the shakedoff* E E E E E E E
limit obtained under two typical cyclic loading programs. D#t 0 0 E—E 0 0 0 0

0 0 0 0 0 E.—E 0

3 With the present method, the SSL can be predicted evenBif*
strong effects of geometrical nonlinearity exist. The errors due to
geometrical nonlinearity were significant if the loading amplitude
was larger than the SSL while they were trivial otherwise.

Table 3 Stress rate-strain rate relations for an element exhib-
iting plastic shakedown (PSD)
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Equations(24)—(32) with respect to the steady-state path param- ¢ g N
eter 7 yields the second-order perturbation equations as follows: e - .
det et (a) /f/ / /
s#:w ut au{‘auf‘ uray. (43) . .
Jel Pt Pk m: Load Reversal Point r
fr=AL (“T/Li_,_gu & WP+ 2m € ur|. (aa) o: New Yielding Point 'Y
! o0 qur autgut aukgut Case(1)
j j o o )
J R g
GH=2, DM (45) b //'/ /f/
v=1 (b)
Note thatD“#=0 because a bilinear constitutive relation is as- ‘ \5
Case(2)

sumed. Differentiating Eq(27), we obtain the second-order per-
turbation equations for each element:

‘L'=‘L'h_1 > ‘C=’En > T=‘Eh+1
J
fum 2 KEViY + T 46 Fig. 16 An example of a new yielding point: (&) the transition
! neere e (46) in an element where the number of yieldi inti
= yielding point increases and

(b) the transition in another element
where the coeﬁicienkﬁ” is identical to that in Eq(28) and the
caret indicates the quantities expressed in terms of the first-order
derivatives as

A @ £ ®)
2 J 2 v
Fr— DALy AL(?SMED T T
M= ot——— U+ 44 u’u. . ransient
' 0 &U{“&Uf‘ ! ot?ui” =1 (9U1-V8U|’<} e s Response
(47)
Assembling the perturbation equations for an element, we have L
g K i i Steady-State
the second-order perturbation equations for the total system AtAL Response
. A L t
Fr=K*"U"+F*, (48)

- . - . . Fig. 17 (a) The change of the load factor and b) the examina-
where the coefficient matriK“” is identical to that in Eq(28). tio% of stn(ai% reversalsg ®

Differentiation of Eq.(29) and (32) leads to

Ae— =0, NZ+=0, (49)
get P () s p transient response when the loading amplitude is slightly changed
Sur U oA U +0#F=0, (u=3), (50)  as shown in Fig. 1(&). As depicted in Fig. 1), the strain re-
: : versal is judged to occur '~ &’ <0. Otherwise, strain reversal
where is judged not to occur. Note that, in the present metldd, and
Pk 2B ¢'~ are calculated not for tracing the equilibrium path in the
0#ﬁ=ﬁuiﬂujﬂ— W'ui/?(#)L“ﬁW, (51) transient response but for examining the strain reversals.
Jui du; aur e gupte To summarize, condition€C1)—(C3) are changed when one of
Equation(51) can be expressed in terms of nodal displacemerff3 following two condition is satisfiedcCED the number of
for the total system as yielding points increases and the new yielding point causes strain
reversals at least in one elemeffE2 the number of yielding
LAUH+ LAW AW 4 Jub =, (52) points decreases. For example, in Fig(tdgthe conditions are

written asJ=2 andI''=T"1 for r< . In Case 1, the strain re-
versal occurs only at the load reversal for r, and the condi-
tionsJ=2 andI''=T"1 are kept. In contrast, in Case 2, the strain
Jrversal takes place BY. In this case, the conditions are changed
to J=3 andI=T?3,

By specifying the value ofs, we can solvel X (3N+1) simulta-
neous linear Eq9448)—(49) and (52). Note that, as stated in our
earlier papef9], the conditions for the transitions+¥E and G~E
should be considered in determining the step length when
employ the terms higher than or equal to the second order.

Appendix C Appendix D

Change of the Number of Yielding Points. When the num- ) ) o
ber of yielding points changes, conditiof@1)—(C3) in Appendix A Basic Algorithm for the Steady-State Limit (SSL) Analy-
A may change. Let us consider a method for determining tfféS:
change of these conditions. First, we consider when the number off optain the equilibrium state under initial constant loads.
yielding points changes. Suppose that a strain reversal occurs & | (CEY) or (CE2 is satisfied, change conditiof€1)—(C3).
I'*in an element. IT“ Satisﬁes Eq(37), the number Of y|e|d|ng 3 Calculate the derivatives with respectﬁo
points increases. On the other hand, the number of yielding points |F the assumed and resulting signs of strain rates are NOT
decrease il"* satisfies Eq(38). consistent, change the stress rate-strain rate relations and GO
Second, when the number of yielding points increases in an TO Step 3.
element atr= 7, as illustrated in Fig. 1@, the strain reversal at 5 |F the SSL condition is satisfied, END.
the new vyielding point should be examined in every element asg Determine the incremental steyr.
illustrated in Fig. 1@). We examine the strain reversal by using 7 Update the variables.
e'~ ande’". Here the prime with superscripts and + indicate 8 IF one of Eqs.(34-37 is satisfied, change the stress rate-
partial differentiation with respect tobefore and aftef’” in the strain rate relations. GO TO Step 2.
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- sura | LOC@l Buckling of a Circular
e | Interface Delamination Between a

Universita’ di Genova,

Via Montallegro, 1-16145, Italy Laver and d SUhStrate With Finite
E. Madenci ThICkneSS
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l. Guven An analytical study investigating the local buckling response of a circular delamination
along the interface of an elastic layer and a dissimilar substrate with finite thickness is
presented. The solution method utilizes the stability equations of linear theory of elasticity
under axisymmetry conditions. In-plane loading and the presence of mixed boundary
conditions on the bond-plane result in a homogeneous system of coupled singular integral
equations of the second kind with Cauchy-type kernels. Numerical solution of these inte-
gral equations leads to the determination of local buckling stress and its sensitivity to
geometric parameters and material propertieS0021-89360)01503-9

Department of Aerospace
and Mechanical Engineering,
The University of Arizona,
Tucson, AZ 85721

1 Introduction studies, the resulting dual integral equations were reduced to a

P f 2 delamination in a | d material svst air of coupled singular integral equations of the second kind with
resence of a delamination in a layered material system suc auchy-type singularity.

a thin film over a§ubstrate can regiuce _the compressive strength t@ased on the approach described in these previous analyses,
a level that permits premature failure in the form of local bucknjs study addresses the local buckling of a circular interface del-
ling. In the experimental investigation conducted by Argon et admination between a layer and a substrate with finite thickness
[1] almost all of the delaminations between the thin filimye) under uniform in-plane compressive strain. The geometry and
and the substrate had circular boundaries. Also, interface delamading of a partially homogeneous layered medium with a del-
nation was only observed with thicker films rather than with vergmination are described in Section 2; the solution method is pre-
thin films. For sufficiently large compressive stresses, the delargented in Section 3; and the numerical method used in the solution
nated region buckles out; thus, resulting in blisters. Numero@é the integral equations is presented in Section 4, along with the
analytical and or numerical models address the local buckling off¥merical results.

delamination in homogeneous m_edia: As discussed by Madchi Problem Statement

[2] these models were based primarily on structural mechanics . )
theories, such as those for plates and beams, and cannot addre&§€ geometry of the layered homogeneous medium with a del-
small ratio of delamination length to thickness, the presence Ination is described in Fig. 1. A cylindrical coordinate system
mixed boundary conditions along the delamination front, and t é,a,z) coincides with the center of the circular delamination on

f illati ¢ inqularit the delaminati e interface plane. The radius of the circular delaminatioa is
presence of oscillaling stress singuiarity, near the delaminalioty "y hicknesses of the layer and the substrate are denoted by
front, rising from the moduli mismatch between the film and suth-

. , andhg, respectively. The layer and the substrate materials are
strate. Madenci and WestmaiB,4] and Madenc{5] addressed isotropic, elastic, and homogeneous, with dissimilar shear moduli,

the local delamination buckling and growth for homogeneous mg-  and Poisson’s ratios;; . The subscriptedor superscriptex
dia within the realm of theory of elasticity in order to impose theefers to the layer and the substratel aind s, respectively. In-
appropriate boundary conditions along the delamination frofflane compressive stresses in the layer and the subst{ftend
Only Wang and Takag6] and Madenci et al.7] have addressed () regpectively, result in a uniform compressive straip,
local buckling of an interface delamination between dissimilaghich can be expressed as
elastic materials.

By considering the stability equations of the theory of elasticity, 2u(1=mw) d o us(1-2v) (1-vy)
Wang and Takad6] and Madenci et al[7] studied the local 1-2y °0 @ 9= 00,y =) 70
buckling response of an interface delamination between a thin 1)
layer and a half-space with dissimilar material properties. Under a5 given by Fluggéd8], the displacement equilibrium equations
plane-strain assumptions, Wang and Takao provided the bucklipGylindrical coordinates under axisymmetric geometric and load-
stress and the corresponding mode shape for a through-the-wig conditions for an elastic medium with spatially constant initial
delamination when both the layer and the half-space are subjecég@ss o{), are
to uniform in-plane compressive strain. Madenci et al. provided
the stress intensity factors for a circular delamination with a slight

o=

~

initial imperfection when only the delaminated layer bonded to a girculg{-
half-space is subjected to in-plane compressive stress. In these ebonding =
-y }1, / la}?’l Hys \\ ::
:: ) " ! -
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(1)

2(1- I) oy’ |1 )
(I) (I) (i) _ () (i) —
T-2s, T ) oy r —(uzr—Urz) .~ m — |7 r 0
' i ' i=ls )
2(1-vj)[1 1 R oy .
T, | T U U]+ Sl - ui)] - —= S (ruf)) =0
I

,Z

in which u{"” andu{" are the components of the displacement field.
The boundary conditions associated with the traction-free surfaces of the elastic 2ayiey) (and the substratezE& —h) are
expressed by

2
1-2v;
,U«|(U(')+U(')) 0
Along the bond linez=0, the continuity of displacement and traction components requires that

1=y 0 r}zo
G (ru’ ) i=l,s re[0p). @3)

uV=u® with i=r,z re(a,») (4a)
and
2,(L| | 2
—— | (A—yull+v (ru“) (1—vul+ve— (ru oy
1=2y |~ 7 " T T re(a®). (40)
m<u£';+u<'>> U+ UG
[
Also, traction-free delamination surfaces on the0 plane re- where cj(i)(g) (j=1,....,4) are theunknown coefficients to be
quire that determined from the boundary conditions andand B; are de-
5 1 fined as
Mi i i
(1—vpull+vi—(rul”)  |=0 - -
1-2y et e T i s ref0a). L 1-2weg 5 [, o
} ) T = - = -
pi(u+ul)=0 ' 2pi(1=wy) I i

) Enforcing the traction-free condition&q. (3)) on the surfaceg

The solution to this instability problem involves the search foeh, andz= —hg and the continuity of traction componensgs.
compressive uniform straim,, so that nontrivial solutions of the (4)—(5)) along the interface plane=0 permits the determination

equilibrium Egs.(2) exist subject to these boundary conditions. of C{), c{’, and C(S) (j=1,4) in terms ofC{) andC{’. As
suggested by Arin and Erdog@h0Q], expressing these remalnlng

unknowns in terms of two unknown functiorfg(r) andf(r), in

3 Solution Method the form
Utilizing the integral representation of the displacement field fo(nH@-1)=[u2(r,0-u(r,0], (10)
suggested by Harding and Sneddéh ul”(r,z) andul’(r,z), in L
the form fa(H(@=0) = U0 - (r0)},
uy(r,z)= Jo Ai(z,6),(rE)d¢g ensures the continuity of displacement components along the in-

(6) terface. As described by Arin and Erdogan, the equations resulting

(i) " from interpretation of the traction-free conditions on the delami-
Uz (r.2)= [ Bi(z,£)Jo(ré)d¢ nation surfaces can be cast into a homogeneous system of singular
0 integral equations of the form

permits the reduction of the displacement equilibrium equations

i=l,s

(Eq. (2)) to a pair of ordinary differential equations féx(z, &) i 2 _
andB;(z,£), ' Af(r)+ — 7an(t)t_r + | k(rpf(dt=0, [r|<a
11
. 21-w) 1 ooy, (1)
A= g, AT T, BT _f Ai=0 with constraints
i=l,s (7)
2(1— 1 (l) a a
(—V)B" £2B,+ EN/ +—§ZB 0 f f,(t)dt=0 and f [t|f,(t)dt=0. (12)
1-2y, 1-2y; -a -a

in which Ai(z,£) and Bj(z,£) are unknown auxiliary functions The vectorf(r) contains the unknown functiorfg(r) and f,(r).
and the prime denotes differentiation with respect to the varialigown matricesA, B, andk are given as
z The general solution to this system of equations can be readily

written as 0 a 5 KD Kya(r,t) klz(f.t)}
= s = y I" =
Ai(z,§)=Ce ¥+ CYlené+ g CY e CYefi¥?] @ 3 0 01 Kai(1,1) kzz(r.tzls)
Bi(z,¢)=7[C{'e ¥~ CY e+ CYlefit?+ e it where the elements d&f are expressed as
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B 1 my(r,t)
T

-1 1 ®
Kig(r,t)= ?+ EMJO [b;C1y(6)—1]

X Jo(r§)Ja(té)édé

1 ® — _
Kyor,t)= Eltlf [b;C1(€) —a ]Jg(ré)Io(té) édé
’ (14)

1 ® — _
Koy(r,t)= §|t| J'o [0,Co1(8) —ay]da(ré)J (16)Edé

1 my(rt)—1

1 o _
Koo(r,t)=— P Sy + §|t|J0 [b,Cox(é)—1]

XJ1(r§)Jo(té) €dE.

The constants; anda (i=1,2) and the explicit expressions for

Cij(¢) (i,j=1,2) are given in Appendix A. The functioms; (i
=1,2) are related to the complete elliptic integr&sandE, of the
first and second kind, respectively, as

t?—r? (t) r (t) it <]r|
T S EE)

m,(r,t)= ; (15)
elg]. 1=

and

r t
Celd]. s

my(r,t)= (16)

tzE r t2—r2K r .
—E|l-|- ——K]|- >rl.
Pl 12 i) [t[>]r|

The dominant part of the system in Ed.1) is decoupled as

1 (a dt a
g+ — Ag(t) — + K(r,t)g(t)dt=0 a7
m)_a t—r —a
with the constraint conditions
a
f C(t)g(t)dt=0 (18)
—a

3 2N+1
1 All

- B (1 4 -
(1_Xj)a1(l+xj)'glm2:l mPism .21 m
3 2N+1
1 A
- - (2) 22
oy a2 Bt 2

o

2N+1 2N+1

S e 3 =0
2

i=1

(23)
2N+1
S 16l + v ) =0
=
in which I=j—1 or j—2 for odd and even values §f respec-

in whichg=R™'f, A=R"!DR, K=R !A"kR, andC(t) is de-
fined by

1 0
0 |t
The modal matrix oD=A"'B is denoted byR,

Va,  Va;
—iVa, iVa

The elements of the diagonal matrik, are the eigenvalues of the

matrix D, i.e., A;=i/\a,a, and A ,,=—i/\a,a, with i==1.

Adopting the procedure by MuskhelishvillL1], the fundamen-
tal solutions to the dominant part of this system of equati@up
(17)) are of the form

Wi (1) = (1—1) k(1 +1)%%,

R.

C(t)=[

(19)

[t]<1
in which
a=3—i(—1* and B=3+i(—1)e

(with k=1,2) where

(20)

1 | [Vaja,+1]
e=—I00——=——.
27 g|\/a1a2_1|
As suggested by Erdogan and Gupi], the solution tog is
constructed in terms of an auxiliary functiog,(t), in the form

()

gk_Wk(t) )

This solution form ensures the proper behaviogg(ft) at the end
points. The unknown auxiliary functior,(t), is regular on the
intervalte[ —1,1].

The complexity of the kernels in Eq14) requires that the
singular integral equation be solved numerically. The procedure
involves the reduction of the integral equation and the constraints
to a system of algebraic equations using the collocation technique
introduced by Miller and Keef13] and later extended by Kabir
et al.[14]. In this technique, the unknown functiog,(t), is ap-
proximated by quadratic Lagrange interpolation polynomials. As a
result of this discretization. Equatiolis1)—(12) can be written as

with k=1,2. 1)

2N+1

Wi(l)(xj)(f’i(l)Jr 21 Kaa(X; :ti)Vi(l)¢i(l)+K12(Xj )2 ¢P=0
=

=1 (22)

Wi(2)(xj)¢i(2)+ 21 Kaox(X; yti)Vi(l)¢i(l)+K22(Xj )PP =0
“

4 Numerical Results
In matrix form, Eqs.(22) and(23) can be written as

oM (0

[w W<2>]Lp<z> =[0]

whereW® andW® are the complex coefficient matrix of size
(2N+2x2N+2) and®® and®® are the vector of unknown

auxiliary functions,¢™ and ¢{? , respectively, evaluated at the
collocation points. The components of the coefficient matrix in-

(24)

tively, andN is the number of integration intervals. The singulavolve the computation of infinite integrals appearing in E).
weight functions,w;(x;) and »;, and the Lagrange coefficients.The infinite integrals are evaluated by using the modified form of

B.,, are given by Miller and Keelr13].
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Madenci and Westmann (1991)
_______ Timoshenko and Gere (1961) n

[‘

_ 02k /i =101 (Present analysis) /s
® Z ——— /i, = 0.99 (Present analysis) /
= I = = /
E o 01 hs/hx_l’ vs/vl_l ’
3 ;D 0.08 |-

5 = )
4 % Clamped :
< 9 ampe: K
2 ﬁ 0.06 = 14.68 (h/a)/6(1 - v) .
2 2 ‘
= £ 0.04 - ‘/;

Zz .

- ) 2 Simpl red
0.02 i e — mply supporte
" - 4.2 (hjay J6il = v)
. - ' L. -
I 1 R ! i 0 =" 1 ]
8.05 0.075 0.1 0.125 0.15 0.175 0.2 0 0.05 0.1 0.15 0.2 0.25
Trial buckling stress, o, /i, Layer thickness to delamination length ratio, /1,/a
Fig. 2 Search procedure for the buckling stress Fig. 3 Effect of delamination length to thickness ratio on

buckling stress—similar materials. (Information contained in
this figure came from Madenci and Westmann [3] and Timo-

I . . . . shenko and Gere [16].)
the oscillations arising from the Bessel functions. This integration

scheme is outlined in Appendix B. A nontrivial solution of the
homogeneous and coupled system of singular integral equation
achieved by searching for values of buckling straip, which
causes the magnitude of the smallest complex eigenvalue of
coefficient matrix to vanish. This is equivalent to the determina:
|

8ifte of structural approximation on the buckling stress is signifi-
ant for increasing delamination thickness to length ratio. In the
e of a layer thickness to delamination length ratigg) of

.2, the normalized buckling stress))/ ., based on the structural
ckling analysis with clamped boundary condition is about 0.14.
Although still high, this value reduces to 0.08 with the present
analysis.

OPafter establishing the validity of the present analysis, the influ-

tion of a zero eigenvalue for which the determinant of the coeff[-
cient matrix becomes zero. The search procedure for finding
local fundamental buckling strain or stress) involves a trial
and error procedure. Under a specific geometry and material pr
erty configuration, the magnitude of smallest eigenvalue of the, .o ¢ shear modulus ratiop{/ ) and layer thickness to
coefficient matrix is computed and plotted for several trial buc'ﬁelamination length ratioh| /a) on the buckling stress is exam-
ling stressesg}’ . When a change in sign of the slope is observeghed for h,/a=0.45, »,=0.3 andv.=0.2. Buckling stresses are
for the estimates of the trial buckling stresses, an approximaigown in Fig. 4 as a function of layer thickness to delamination
value of the buckling stress is obtained by interpolation. Furth@ingth ratio for various shear modulus ratios. It is apparent that the
trials are conducted around this approximation to refine the Va'HSrmaIized buckling stressv,(c',)lm , increases as the layer thick-

of the bu.ckling stress. This searph procedure is illustrated in Figaoq 19 delamination length ratidy,(a) increases. However, the
2 for various number of integration interval=21, 25, 31, 35 gttect of shear modulus ratio on the buckling stress becomes less
and 41 whenh,/a=0.15, hy/a=0.45, =03, »s=0.2 and gjgnificant for increasing layer thickness to delamination length
ps!m=5. As shown in Fig. 2, convergence is achieved for thgyis " /a) as shown in Fig. 5. It is worth mentioning that the
magnitudes of smallest eigenvalues as a function of trial load,
a'(()')/,u,| , with increasingN and that sufficient accuracy is obtained
with N=21 which is employed throughout this study. 0.16
The validity of the present analysis is established by considel
ing a circular delamination in a homogeneous and isotropic plat
under in-plane compressive stresses studied by Madenci aiZ
Westmann 3]. The geometric configuration and material proper-< ;
ties are defined by, /hg=1, v, /vs=1 andy,/us=1. The varia- f; 012
tion of the buckling stress as a function of layer thickness tc g
delamination length ratio is presented in Fig. 3. The previous sc %, 0.1
lution to this problem was obtained by solving for the coupledé
system of Fredholm integral equations of the second kind whilcs o.08 -
taking advantage of the symmetry condition with respect to thig
mid-plane. In the present analysis, slight differences in shee 6L
moduli between the layer and the substrate are introduced : £
s/ =1.01 andug/u;=0.99 in order to avoid the breakdown of 2

0.14 p~

h,=0.45,v,=03,v,=0.2
—— =5

the present solution method appropriate only for dissimilar mate 004 zig

rials. The results obtained for both of these ratios coincide witt =20

others because of the presence of symmetry. With these ratios, t  9-02[~ —_— =25

layer and the substrate exchange places. As shown in this figur

the present analysis results are in acceptable agreement with thc th 0.:)5 ofl 0"15 0!2 0.25
of Madenci and Westman[8]. These results are bounded by the Layer thickness to delamination length ratio, ,/a

results of the buckling analysis for a clamped and for a simply

supported circular plate. As shown in Fig. 3, the plate bucklingig. 4 Effect of delamination length to thickness ratio on
analysis sets the upper and lower bounds. As expected, the influekling stress—dissimilar materials
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016 Q25(8) 01(8)
22 1
C =— C =
2(€) AE) 2A§) NG
_ 0.14p
N with
o onzf
% m1m1 (1—-2Qq7)
8 Q(§)=—71+ + R (4Py—by—a;—d;+cy)
% 01k M2 1
=113
£ 171 (—1+2Qy7)
3 5 + 4P,—by,—a,—d,+cC
5 008 a7y R, (4P;—by—a,—dy+cy)
3
= 0.06F (1-2Qq7y)
£ Q)= ——F——(=by+ta;+d;+cy)
S Ry
il = Qu (—~1+2Q,7y)
3 T - T
=0.125 + MlTlQl R 22 (—=byt+ay+dy+cy)
002 —a— =015 h,=0.45,v,=0.3,v,=0.2 MaT2’e2 2
e =02 2P —B
L 1 1 1 1 _ 1 1
% 5 10 15 20 25 30 Qp(8)= R, (=by—a;+d;—cy)
Shear modulus ratio, u /i,
H1T1 B2—2P;
Fig. 5 Effect of modulus ratio on buckling stress—dissimilar +— R—(_ by—as+d;—cy)
materials K272 2
n1mQr  2P1— B
Qof(§)=1—- M272Q2+ R, (4Q;—b;+a;—d;—cy)
results concerning layer thickness to delamination length ratio,
(h, /a) smaller than 0.08 is not presented in Figs. 4 and 5 because . H#171Q1 B2—2P; 40— bt e de
of the uncertainty associated with the numerical convergence. 1amQy Ry (4Qz—b,+a,—d,—Cy)

The present analysis provides the solution only to the buckling
stress and not the stress field; therefore, the growth of delami
tion cannot be discussed without a fracture parameter such as the A(E)=0Q Q -0 Q
energy release rate. However, as introduced by Mad@jcian ()= 01:(§) Q2 &) = Q1o §) Q21(£)
initial imperfection of the delamination can be introduced to altén which
the nature of the stability problem so that the fracture parameters (B ). (Botroth
can be obtained. Also, the buckling stress obtained from the @1=(P1—Qq)e 1T a,=(P,—Qp)el s &%
present analysis cannot be compared with the previous solutions = _ —(B—m)éh,. _ (Be—ro)éh
such as those given by Evans and Hutchingts] based on the by=(Py+Qp)e T by =(PptQp)efe 7ot
plate theory because the previous solutions could not include the ¢ —(q, —p et . ¢ —(Q,—P,)e (As*7)ths
effect of the oscillatory nature of the stress field and the mixed ’

boundary conditions along the delamination front. di=(P;+Qp)e  TATIN:  d,=(P,+Q,)el AT e
5 Conclusions PF%; Zzlf;z
By solving for the stability equations of linear theory of elas- ! S
ticity, this study investigates the local buckling response of a cir- 1+/3|2 1+/3§
cular delamination between an elastic layer and a substrate with Q= 2 7 Qo= 2
dissimilar material properties. This analysis reveals the sensitivity 7 Ts
of the buckling stress to the geometric parameters and material R — —gp,Q,—2b,d;—2c,a;+2Q;(b,+d;+a,—c;)
properties. Such knowledge may be useful in controlling the in-
fluence of residual stresses arising from the fabrication process +2P,(d;+cy+by—ay)

involving deposition of thin films. Also, this study provides the
bench-mark solutions for related problems addressed by using ap- Re=—8P2Qz—2byd;—2¢,8,+2Q,(b, +dy+a,—Co)
proximate solution methods. +2P5(dy+co+by—ay)

Appendix A S S I S M TAT
In Eq. (13), the constants are defined as ! 2(1-v)p ' ° 2(1-vg)ps

lim C.(6) lim Cay(£) P A N A
e R ) 1= I s= -
al_—lim Culd)’ az——”m CoA &) M Ms
(S)ZMS o m
- 1 - 1 70 T (1= 7O
1= T~ 2 2T T~ A
;mcll(g) ;Tlcﬂ(g) Appendix B
where The approximate evaluation of the integral of the type
0 Q i
Cu(é)= Az(l(éf) ; Cilé)= Al(l(éf)'? (r.tab)= L 00 9p(rx) J(BX)lx D
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in which J,(rx) andJy(tx) are Bessel's functions of the first kind from which the weights are computed after the evaluation of the
with p,g=0,1 andf(x) being smooth in the intervgl,b] can be expressions foR;(r,t;Xj_1,X;;1). This is achieved by defining
achieved by the variablex=Az+B with A=(Xj,1—X;_1)/2 and B=(X;;,
+X;-1)/2, and by approximating the Bessel’s functions of the first
kind, J,(rx) andJy(tx) in integrals in Eq(B5) using the Cheby-

N-1

I(r,H= >,

(B2)

L0t X -1, 41)
j=1.35
in which N is the number of integration points in the interval
[a,b] leading to equal integration intervals of;(;—x;_1)=(b
—a)/N andl; is defined as

X:

j+1
L(r X — 1, X+ 1) =

X1

Over the subintervalx;_;,X;;1], this integral can be approxi-
mated as

F(X)Ip(rx)Jq(tx)dx. (B3)

chev polynomials of the first kind as

M
Jr(AZ+B)]= 2, anTw(2) (B7)
m=0

and

M
J[t(AZ+B)]= 2, bpTw(2) (B8)
m=0

whereX denotes a finite sum whose first and the last term are to

Ij(rlt;xj—l'Xj+1):Wj—lf(xj—l)+ij(Xj)+Wj+lf(Xj+l)

in which w;_,,w;,wj,, are the integration weights. They are

established by assuming a quadratic variation of the product of the

Bessel's functions of the first kindy(rx)Jq(tx) in the interval
[Xj-1,Xj+1] such that
X

f j+1
Xj,l

i i i i _
X! Jp(rX)Jg(1X)dX=X{ _ 1Wj 1 +XWj+ X} . W) 1 = R;

be halved. The coefficients are then given by

2 M
am=mE J,[r(Az+B)]cog mkar/M) (B9)
k=0
M
2
bm=mk20 J[t(AZ+B)]cog mka/M) (B10)

in which z,=coskn/M). Substitution from Eqs(B7) and (B8)

into Eq. (B5) results in

with i=0,1,2. 65) o
. ) ] )
In matrix form, these equations are rewritten as Ri:Az 2 ambnf (AZ+B)T(DT (22 with 1=0.12.
1 1 1 m=0 n=0 -1
e o (B11)
Xice X Xjsa g Wi =0 Ry (B6) .. _ _ N _ _
2 2 2 Wi R This expression permits the explicit evaluation Rf with the
Xji-r X X I 2 following identities:
|
1 1 N 1 N
i m+n=even
f Tn(2)Th(2)dz=— (m+n)>—1  (m—-n)>—1
o 0; m+n=odd
! I +n=odd
;. m+n=o0
f 2T(2)T(z)dz=— (m+n)2—2%2 " (m—n)?-2?
- 0; m+n=even
1 1 3

Y 1 771 2
f z Tm(z)Tn(z)dz:—Z (m+n)*=1 (m—-n)*—1
-1

0; m+n=odd.

+ + : m+n=even
(m+n)?—3%2 " (m—n)?>-32

Substitution forR; and numerically inverting the system of Eq.R
(B6) leads to the integration weights. Finally, the approximate
value of the integral is calculated from E@®11). The accuracy of
this integration algorithm is demonstrated by considering the fol-
lowing infinite integral:

fxxe‘xz\]o(x)\]o(x)dx
0

with an exact solution of=e™%?,(1/2)/2=0.32252 in which,

is the modified Bessel's function of the second kind. Its numerical
evaluation withN=200 andM =4 for a=0 andb=100 leads to

a value of 0.32259.
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Antiplane Deformations for
Anisotropic Multilayered Media
by Using the Coordinate
Transform Method

Green’s functions for anisotropic elastic multilayered media subjected to antiplane shear
Chien-Ching Ma deformation are presented in this st_udy. T_he gntiplane _shear deformatio_n due_ to a con-

centrated shear force and screw dislocation in an arbitrary layer was investigated in
detail. A linear coordinate transformation is introduced in this study to simplify the
problem. The linear coordinate transformation reduces the anisotropic multilayered prob-
lem to an equivalent isotropic problem without complicating the geometry of the problem.
Explicit analytical solutions were derived using the Fourier transform and the series
expansion technique. The complete solutions for the multilayered problem consist only of
the simplest solutions obtained from an infinite homogeneous medium with concentrated
loadings. Numerical results for the full-field stress distribution in multilayered media
subjected to a point body force are presented. These numerical results were compared
with the solutions obtained by considering the multilayered medium as one layer with
effective elastic constants determined from the averaged material constants of the multi-
layered medium. It is found that the shear stregs of the homogeneous one layer
solution is a very good approximation of the result for the multilayered medium; however,
the shear stress,, in these two solutions has a large discrepancy due to the factrthat
is discontinuous at the interfaces of the multilayered med[i®6021-89360)01703-7

Ru-Li Lin

Graduate Student

Professor

Department of Mechanical Engineering,
National Taiwan University,
Taipei, Taiwan 10617 R.0.C.

1 Introduction ations in advance of the analysis of a given boundary value prob-
Antiplane shear deformations are the simplest of twdem. For ?nisotropic_ elasticity, Lekhnitskiiis formulatioih10])
dimensional deformations that arise in anisotropic or isotropft"d Stroh’s formulatiori{11]) are the two widely used methods.
elastic bodies. For the antiplane shear deformation, the displad@€ general solutions obtained by these methods showed that the
ment is parallel to the axial coordinate that is normal to the plarfétiplane anisotropic problem can be converted to a corresponding
and is dependent only on the coordinates in the plane. Such #&tropic problem by properly changing the geometry of the origi-
formation field characterized by a single axial displacement c&&l configuration and the tractions on the boundary. In other
be regarded as complementary to that of plane-strain deformatiwards, the anisotropic antiplane problem can be simplified to an
(e.g.,[1]). The antiplane problem plays a useful role as a pilasotropic problem with the aid of a suitable coordinate transfor-
problem that reveals simpler aspects of elasticity solutions. Theation. In the isotropic case, the displacement equilibrium equa-
antiplane problem of two dissimilar anisotropic wedges has be@bn becomes the Laplace equation which can be solved easily.
considered by Mg2] and Ma and Houf3] using the Mellin For the anisotropic problem, however, the governing equilibrium
transform method. They showed that the stress and displacemgitation is a general second-order partial differential equation
fields have reduced dependence on the elastic constants. Re{{iff constant coefficients. In particular, a variety of coordinate
[4] did th_e antlplgne stress anaIyS|s .Of a cracked beam madett%]‘nsformations could be used to convert the general second-order
_ortho_troplc ’.“at_e“a'- Wu and_Ch|E5] dlscu_ssed |nterfape CraCkSpartial differential equation to the Laplace equation. The proper-
in anisotropic bimaterials subjected to antiplane shearing. [Bhg . : . . .
also provided many basic discussions and investigated some f fi° of the poordl_nate transformations for antlplane_ deformations
damental problems for anisotropic antiplane deformations. In adéve Peen investigated by M&2] and Horgan and Millef1]. An
dition, considerable attention has been paid to the analysis of &hthotropic transformation concept was introduced by Yang and
tiplane shear deformation in nonlinear elasticity theory foMa [13] to analyze the much complicated and difficult in-plane
isotropic solids, cf. Jiang and Knowl€g], Polignone and Horgan deformations for planar anisotropic solids.
[8] and the references therein. A comprehensive review of anti-Because of the rapid expansion in the use of structural compo-
plane shear for both linear and nonlinear elasticity is given byents made of laminated materials, predictions of the behavior of
Horgan[9]. multilayered media subjected to arbitrary loads are needed. The
Analysis of anisotropic elasticity problems is often tedious dustress states at the interfaces of multilayered media are of particu-
to the presence of many elastic constants. It is desirable to redigeinterest because delamination may occur if allowable levels are
the dependence on elastic constants through theoretical consiégeeeded. For multilayered anisotropic media, the problem be-
comes more complicated than that of homogeneous isotropic
" ContributedEby the Applfied Micllha?ics PiviiionAC;ﬂS EAgER'CAN SOf;'ETY OF  counterparts. Based on the mixed formulation of elasticity, Bufler
NECHANCAL EXCINCERS o pubicaton i the ASWE OuriL or ArrLED _[14] and Bahaf 15] independently constructed the transfer mairix
3, 1999; final revision, Nov. 30, 1999. Associate Technical Editor: M.-J. Pinderapproach to solve multilayered media problems. A local/global

Discussion on the paper should be addressed to the Technical Editor, Profesf¢ffness matrix approach which is similar to the transfer matrix
Lewis T. Wheeler, Department of Mechanical Engineering, University of Houston . .
Houston, TX 77204-4792, and will be accepted until four months after final publa‘pproaCh was employed by Pmde{mﬁ] and Pindera and Lane

cation of the paper itself in the ASMEDWRNAL OF APPLIED MECHANICS. [17,18 to solve round punch contact problems of arbitrarily lami-
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nated media. The local/global stiffness matrix method is based bet u, v, andw, respectively, represent the displacement compo-
the systematic construction of a global stiffness matrix in terms oénts in thex, y, andz-direction of the Cartesian coordinate sys-
local stiffness matrices of the individual layers. tem. For antiplane shear deformations,

According to the classical Saint-Venant principle, the precise
decay factor of the stress with distance from the region of applied
load depends on the geometry of the body, the boundary condpd the relevant shear stresses are denoteq bgnd 7,,. If the
tions, the applied load and material properties. For layered mediaaterial constants have the form represented in(&q.then the
this issue has been examined by Baxter and Hof@)&r20. They equilibrium equations in the andy-directions are automatically
showed that material inhomogeneity significantly affects the pragatisfied, and the equilibrium equation in thelirection can be
tical application of Saint-Venant's principle to sandwich strucwritten in terms of the displacement as

u=v=0, w=w(x,y), (5)

tures. Wu and ChiJ21] have solved the problem of a semi- 2w 2w 2w
infinite multilayered monoclinic strip loaded by shear stress at the Ces——5 +2Cg5—— + Cyy—5 =0. (6)
end by using eigenfunction expansion in conjunction with Betti’s % x Caxay T ay

reciprocity theorem. _ ) _ ) _ Equation(6) is the governing equation for an anisotropic antiplane
In the current study, an anisotropic elastic multilayered mediugkformation problem, and is a homogeneous second-order partial

with n layers subjected to antiplane loading within an arbitranyitferential equation for displacemewt The nonzero stresses are
layer is investigated. The material properties and the thicknessyilated to the displacement as follows:

each layer are different. One of the objectives of this study is to

develop an effective analytical methodology to construct the full- Iw Iw

field solutions for this complicated problem. A general linear co- Tyz= C45W+C44W’

ordinate transformation is introduced in this study to simplify the

problem. This linear coordinate transformation will simplify the IW IW

governing equilibrium equation without complicating the bound- Txz= C55(9_X+C45W’ @
ary and interface continuity conditions. Based on this transforma-

tion, the original anisotropic multilayered problem is converted to IW IwW

an equivalent isotropic multilayered problem. The analytical solu- Ozz= C35W + c34(9_y'

tions for the stresses and displacement obtained in this study are . . .

exact and are expressed in an explicit closed form. For a numdrRl monoclinic materials with the plane of symmeiry 0, Cay
cal example, a multilayered medium with 12 layers is discussed nC3s= 0 SO thato,,=0.

detail. The stress distribution for the multilayered solution is com-

pared with the homogeneous single layer solution by averagiBg Linear Coordinate Transformation

the material constants of the multilayered medium. The governing equation expressed in E&).is a general homo-

geneous second-order partial differential equation with constant
2 Antiplane Shear Deformations of an Anisotropic coefficients. Such a linear partial differential equation can be
Elastic Solid transformed into the Laplace equation by a linear coordinate

o . transformationsee, e.g., Horgan and Mill¢L]). A special linear
In the absence of body forces, the equilibrium equations for tR@grdinate transformation is introduced as

elastostatic problem are .
a
O'ij N = 0, (1) = [

0 B
where the repeated indices imply summation and a comma stands
for differentiation. The generalized Hooke's law for an anisowhere a=—Cy5/Cyq, B=p/Cyy and pu°=CysCs5— Cis. As-
tropic, homogeneous, and linearly elastic solid is given by sume thaiC,, and Cgs as well asy/C4Css— C35 are all positive.
After the coordinate transformation, E() can be rewritten as

X
Y

X

v/’ ®

7= Cijuu @) the standard Laplace equation in € Y) coordinate system
whereeg =1/2(uy+u, ) denotes the infinitesimal strain tensor, 5 2
andC;;, are the elastic stiffnesses satisfying the usual symmetry Me( Iw + J W) =0 9)
conditions. Due to the symmetry 6f;, , Eq.(2) can be rewritten ax2 " gY?

as It is interesting to note that the mixed derivative disappears from

;= Ciji Uy, - (3) Eq. (6). The relationships between the shear stresses in the two

. . . . . coordinate systems are given by
For a general anisotropic elastic material, an antiplane deforma-

tion or a plane deformation in general does not exist. For some ez9w(X,Y)
special anisotropic materials possessing elastic stiffneSggs Ty X,Y) = p oY =7vAXY),
which are written in a contracted notation in the form

aW(X,Y) _aw(X,Y)

Cu Ci, Ciz 0 0 Cyf Tl XY) = Bt apt—g (10)
C:22 C23 0 0 C26 B (X Y) (X Y)
=BT Y)—ar ,Y).
Csz Cz4 Css Cge . e v
C= c c ol (4) In a mathematical sense, E@6) and(7) are transformed to Egs.
44 =45 (9) and (10) by the linear coordinate transformation expressed in
sym. Css O Eq.(8), or in a physical sense, the governing E).and the stress
c displacement relatioii7) of an anisotropic antiplane problem are
L 66 converted into an equivalent isotropic problem by properly chang-

the plane and antiplane deformations will be uncoupled and suicly the geometry of the body using the linear coordinate transfor-
anisotropic elastic materials are capable of an antiplane defornmaation, Eq.(8). The coordinate transformation in E@) has the
tion (see, e.g., Horgan and Mill¢d], Ting [6]). following characteristics(a) it is linear and continuousb) an

For two-dimensional problems, the Cartesian coordinate syst@misotropic problem is converted to an isotropic problem after the
is chosen such that the antiplane deformation is inztgection. transformation, andc) there is no stretching and rotation in the
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h, Y 1 H, Y 1
h 5 i 2
2
|
m+1 :
n-1
han n H, n
Fig. 1 Configuration and coordinates system of an aniso- Fig. 2 Configuration and coordinates system for the multilay-
tropic multilayered medium ered medium after the linear coordinate transformation

horizontal direction. These important features offer advantages'iere() is the+delta function ant( ) is the heaviside function.
dealing with straight boundaries and interfaces in the multilayerdal Eq. (13), r{,“z and r'y“z indicate the shear stress above and
system discussed in the present study. The most interesting feabstow the plane of applied loadings in theh layer;h* andh™

is that a straight linexy,yo),(X2,Yo) that is parallel to the-axis  denote the position just above and below the applied loadings at
will remain a straight line X1,Yo),(X;,Yo) parallel to theX-axis y=h (see Fig. 1 Application of the traction and displacement
after the transformation, and the length of the line will not changeontinuity conditions at the interface between f{ile andj + 1th

i.e., X,—X;=X,—X;. The relationship between the anisotropidayer, yields

problem and the corresponding isotropic problem in the polar co- i i+1

ordinate system and more detailed discussions of this linear coor- Ty_z(x’hi): Tyz (x.hy), P _

X ; i i1 1,2, n—1. (14)
dinate transformation were presented by Ma). w/(x,h))=w!"*(x,h)),

The linear coordinate transformation described by @g.can
be used to solve the anisotropic antiplane problem for only
single material. However, for a multilayered anisotropic mediu
with straight interfaces shown in Fig. 1, a modification of th
linear coordinate transformation will be introduced in the follow- [ x
ing section to transform the multilayered anisotropic problem to{Y
an equivalent multilayered isotropic problem.

In order to maintain the geometry of the layered configuration, the
Ifhear coordinate transformation described in ER). is modified

Zbr each layer as follows:
j-1

+ hy

k=1

1 «ajfx ag— g
0 gy Bk Br+1

Comparing with Eq(8), the first term on the right-hand side of
Eqg. (15) retains exactly the same form while the second summa-
4 Formulations for Multilayered Media Subjected to tion term becomes the modified term. The new coordinate trans-
Interior Loadings formation possesses the following characteristies:no gaps or
) . ) ) _overlaps are generated along the interface @pado sliding and
In the following sections, the Green’s function for an anisoy, mismatches occur along the interface. The geometric configu-
tropic n-layered medium will be constructed. Consider an anisQstion in the transformedX, Y) coordinate is shown in Fig. 2.
tropic n-layered medium witm layers subjected to a line of con-Ngte that while the thickness of each layer is changed, the inter-

stant forcef, and a screw dislocation of magnitudg along the  faces are parallel to thé-axis. Thus, the new geometric configu-
z-axis located in themth layer. The displacement and sheafaiion is similar to the original problem.

stresses are independent of ihaxis and so we can consider this The equilibrium equations in the transformed coordinate are

proble_m as a two-dimensiona] an'FipIane problem: In other Wordﬁmverned by the standard Laplace equation expressed by
the original problem can be simplified as a two-dimensional mul-

. j=1,2,...n. (15)

tilayered medium subjected to a point shear force and a screw LW W
dislocation shown in Fig. 1. The displacement equilibrium equa- Moz TRy =0. (16)

tion in each layer is expressed as ) .
) The displacemenk and the shear stress ; are continuous along

oAl Cewh o pPw the interfaces in the transformed coordinates
Clssa 5 +2(:115(7 > +CL4& ~=0, j=1.2,...n. _ _ _ _’
X Xay y WX H)=w X H),  7iAXH)=7HXH)),

11)
The boundary conditions on the top and bottom surfaces of the j=12,...n-1, (7)
layered medium are where
7A%0=0, 7,(x,h,)=0. (12) i-1
The jump conditions for the shear stress and displacement across szﬁthJrgl (Bi= Bicr 1) i
the point loads within thenth layer are
N _ The top and bottom surfaces are traction free and can be ex-
7y (x,h*) =7, (x,h7)=—1,8(x), (13) pressed as
W™ (x,h*)—w™ (x,h )= —b,U(x), v AX,0=0, AX,H,=0. (18)
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m—1 Herec; andd; are undetermined coefficients for each layer and

+ d+ can be obtained by applying the boundary, continuity and jump
Cn G conditions. Substituting the general solution into the continuity
""""""" b & f; -~—--------- conditions at the interfaces, the recurrence relation for the coeffi-
Cn Gm m cients for each layer can be expressed as
m+1 Gl 2|8 (22)
dj+l S]
Fig. 3 The jump conditions for applied loadings at the mth
layer or
Ci Ci
M— SG()| 4 (23)
The jumps within themth layer caused by the applied antiplane ! I+l
body force and screw dislocation are shown in Fig. 3, and tRghere
jump conditions are
. - tje*ZwH'
vz (XHT) =7 (X,HT)=—f,8(X—H’), (19) G'(j)= e20H] 1 )
W OGHT) W™ (X HT) = —b,U(X—H"), 1 e
. j
where G (l):{ oH: }
7tjez Hl 1
m—1
e e e e
H’=amh+z (ak—akﬂ)hk, t._’uj‘*'l_’uj s/ = 2Mj+l " _ 2“1
k=1 Tl ps ) T sl T wlhul
j j+1 lu'] Mj+l M] /"’J+l
m—1

Heret; is called the reflection coefficient aisd,s’ are the refrac-
H=pmh+ ,Z:l (B Brw )Nk tion céefﬁcients By applying the boundasgcc;ndition for the top
layer 7y (»,0)=0, c,=d, is obtained, and along with Eq22),
Here TYZ and 7¥, indicate the shear stress above and below thhe coefficients for thenth layer can be related to those of the first
applied loadings, respectively, in timeth layer (see Fig. 3 The layer as follows:
location of the applied loadings is shifted by an amounHo&fin

the horizontal direction. The stress displacement relations ex- Cm _m o n C1
pressed in théX, Y) coordinates within each layer become di| &4 gG (m—k) cq)’ (24)
j
zjz(XvY):M,ewl where
(20) n
3WJ(X Y) H a=a;-a, --a,.
ThAXY)= T =1

The boundary value problem described by H4$§)—(20) is simi- Similirlry, by applying the bﬁozl(Jur:'da_ry condition for the bottom
lar to the multilayered problem for an isotropic material. HencYer 7 yz(®,Hn) =0, c,=dye ““"'n is obtained, and along with
the linear coordinate transformation presented in(&g). changes Ed- (23), the coefficients for thenth layer can be represented by

the original anisotropic multilayered problem to the corresponding _1 n-1 20,
isotropic multilayered problem with a similar geometric configu- CT H 1 — G (k) dy e (25)
ration and boundary conditions. In the next section, the boundary n] ms "

value problem described by Eq46)—(20) will be solved, and the ] - ) )

relationships between the shear stresses in(hg) and (X, Y) Finally, the jump conditions in thenth layer in the transformed

coordinates established in E¢LO) will be used to obtain the domain are employed

solutions for the original anisotropic multilayered problem. :
+ qoH + o~ owH - a)Hflb —iwH’

creH+die “H—c e’H—d e e ',

5 Fundamental Solutions in the Transformed Domain @ (26)
The boundary value problem of the previous section can be b ot oH e aH e —on — T i

solved by the integral transform technique. The expressions for Cn€“"—dpe” “"—c e’ +dye “"=——e """,

the field variables will be found by applying a Fourier transform Hm®@

over the spatial coordinaté with parameteiw. Take the Fourier wherei = —1 and Eq.(26) can be written in a matrix form as

transform pairs defined as

ib,
G(w,Y)= f g(X,Y)e ¥dX, et e fen] fenll | @ | i o
- et _gmeH dr'; d;] - _fZ € ' ( )
1 (= . e
- T ioX Mm@
9(X,Y) ZwJ_xg(w'Y)e do,

For convenience, sat-=A;c;, d-=A,c,, c,=B,d, andd,
and apply to the governing E§16). Then, Eq.(16) becomes an =B.d,, whereA;, A,, B; andB, are constants which can be
ordinary differential equation with the following general solutiorexpressed in matrix form as

in the Fourier transformed domain: m_1

A
Az

WJ

n-1
Bl 1 e*Zan}
el Lgew )
(28)

ewY e~ wY

l k[
Cj kls|,< (m )

d;|’

—oY

Tz ,ufwe“’Y - ujwe
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Therefore, Eq(27) can be reformulated and coefficietsandd,,
are found as follows:

6 Full-Field Solutions and Their Physical Meaning

The complete solutions in the Fourier transformed domain for
multilayered media have been presented in Eg8). and (31) in
the previous section. The solutions are so complicated that it is not
easy to obtain the inverse Fourier transform. In order to construct
the explicit analytical full-field solution of tha-layered medium,

e~ wH e—wH

C1
d,

3 1/2 B, —B;
CAB-ABi A, —A;

ewH ewH

ib_z the Taylor series expansion is used in this study.
P o Because of the denominators in E¢&9)—(31), it is impossible
X[ g |eTler. (29) to invert the Fourier transform directly. By examining the struc-

z ture of the denominator of Eq29), both the numerator and de-

e
Hm® nominator are multiplied by a consta®it= (117" 's;) (IT}_1sp).
The undetermined constartsandd; for each layer are obtained Then it becomes

with the aid of the recurrence relations given in E(&2) and

(23)._After sut_)stituting the coefficients andd; into Eq.(2_1), the . s/2 B, —By|[e @l e oH
full-field solutions for each layer are completely determined in the d1= = WH WH
transformed domain. Omitting the lengthy algebraic derivation, %) S(A1Ba—AB)umw[A, —Aql € —-e
the general solutions for each layer are finally expressed as e
|Mmbz —iwH’
s €7 (32)
\TVj _ e—in' z

e (Bze_wH(fz_ i :U*ﬁwbz)
m

T jYZ a Z(AzBl—Ale)w,u,

e»Y e oY can be shown thap<1 for «>0. By a series expansion, we
+BeM(f4iumb)) | o v e oY obtain 1/ p==37_,p' so that Eq(32) can be rewritten as
i1 —20H;_ .
1 1 tj_xe -k Hl URTRRT I | -
— 30) c;| S|B2 —Bijle e -
Los/ |t eZa)Hj,k 1 1 ( - —f e*ImH . |.
k=1 =KLk da] 20|A, —Al| et —eH|| 2 ;)p
for 1<sj=m. And for msj=n, HMm
(33)
il _ g ioH’ ( " e ) Now, the solutions foic; andd,, are linear combinations of ex-
~i |= Ae @ —i i i i =f(w,Hy)
71 2(A.B —A.B s (A2 27 1m0z ponential functions, i.eM;e , and so are; andd;. Note
e (AoBr=ArBo)wpur, thatM; are constants which denote the magnitude of the exponen-
evY e oY tial function, andf(w,H;) are functions ofw andH; .
+AeH(f,+iulh,))- e — uCme oY The solutions for the displacement and shear stress in(B@s.
Mm@ M@ and(31) can also be expressed in similar forms. By a complicated
14 1 —t,e20Hk ~20H, algebraic derivation, the explicit expressions for displacement and
% H — K € } (31) shear stress in the Fourier transformed domain are obtained as
k=) Sy | — ke 1 1 follows:
|
Wj:E E M _(fz_iﬂgbz)ew(Y7H+Fk)_(fz+iﬂﬁ1bz)ew(Y+H+Fk> g ioH
50 50 o | —(f,— i pSbye oY H=FO — (f 41 ueb,)e @Y H-F) ’
(34)
o N . _ c’ . w c”
~ :2 2 MjeMk _(fz_l/"“(ranbz)ew(Y P )_(fz+|/v4’§1bz)e (HHER) —iwH’
Tvz e e —w(Y+H-F) L e Cov-n-r)|© '
=0 k=1 Hm | +(f,~iupby)e K+ (fiupby)e K
[
where a,;=1,f}=0,
a;, ok-1=a;ty, k=1,2--m—1, (35a)
N=2n+ti-m-1 (on_q)l 1<j<m, fﬁgk—lz_(fﬁ"‘ZHk). i=1,2--2k1
N=2ntm=i-1.(2n—1)! m<j=<n
by=1,f>1=—2H,, f>2=0,
Here n is the number of layersm denotes the layer that is bisak-1= = byt i, k=1,2--n—m,
subjgcteq to thej applied loading, am% the/j,th I;a,yer Whezsz _the fiszk—lz _(fiB“FZHnJFZank)y i=12..2k1
solution is required. The termd,, F; , Fi , Fg , andFy in B, 5
Eq. (34) are very complicated and difficult to present. The follow- k= —(F72+2H,—2H, ),
ing functions are first defined as (35h)

Journal of Applied Mechanics

The denominator in Eq(32), S(A;B,—A,B,), can be decom-
posed into the form of (% p) wherep=1—-S(A;B,—A,B,). It
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P — p — P — ...om=1
Fi-p.2n-mee= ~@&bks  Tonoay gy m-14 =@k, 1=1,2;--277,

B B B (35¢)
9-ny o m= I HRE o1y gogy o1 =f— 1 k=122,
|
rL=(£I1r|po, 142,35, 11 =2,3,:2",
I -1 (35d)
g=2 o, k=2 (ip-2)(2"=1)+(ij-1),
0=1 ° 0=1
for 1=0,r =1 andg =0.
For the case of £j=<m, the following functions are defined:
! B
f§i71)<2”‘m+k:fk2+fﬁ!
4 _fBi A j=12...00"1
fioy onmp=f 0, P=1,2,00207, 35
£ =fB2_fA  Kk=12,.2""T
(i—1y2n-myp= N T 4 .
& A
f(i—l)-zn-mk_fkl_fi )
Finally, the termsM,, F¢', FS', F¢', andF{" indicated in Eq(34) can be expressed explicitly as
( -1 m—1
M(k_l)_2n+j—m—l+i: 7( OH S[))r:(rip,
=i
F?k’,l)42n+jfmfl+i:glk+fic , k:lxzx'”(zn_l)lr
< F?I,(Ll).znﬂfm—lﬂ:glk+ficnv i:1‘2,"'2n+j7m71- (35f)
d’ '
F(k—l)»znﬂ'*m*lﬂsz"'ffj ,
d// "
\ F(k—l)-2n+i*m*1+i:9:<+fid ,
For the case ofn=<j=<n, the expressions are
’ _ B A
G- am 1= F T
f<ci”—1)-2m*1+k:f:31+fA, i=1.2,--2"71,
) (359)
P = e 1, k=122
o B A
fiogy. om0 =21
The termsM,, FS, FS, FY, andFY" are presented by
( =
M (k-1).2n-i+m-14;= 2 Oljm Sl(;) rLrg"*1+i '
F o yon iom 1 =0+, k=122 1),
U " . —_ — 351
< F(Ck—l)»Z”’J'*m*l-H:gL—i_fFf i=1,2,---20 ML (33
d’ :
F(k—l)-znﬂ'*m’l#ri:g:(—i_fid s
d/l "
\ F(k—1>~2n*i+m*1+i:g:<+fid )

The structures of the complete solutions given in 4) have applied concentrated forcg, and dislocationb, in an infinite
some interesting characteristics. The solutions are composedndium atY=H andX=H’, all the remaining terms are image
infinite terms, and it is interesting to note that each term represefdsces and dislocations that are induced to satisfy the boundary
the solution in the transformed domain for a concentrated loadig@d interface conditions. This method is referred to as the method
in an infinite homogeneous medium. The term wift{(H*+F,)  of images. The advantage of this method is that the solutions of
in the eXponentiaI functions indicates the location of the |Oadin9rob|ems with Comp”cated geometric Configurations can be con-
However,Mb, and w{/u;Mf, represent the magnitudes of thestructed by superposing the solution in an infinite medium. The
concentrated dislocation and force, respectivelyis dependent mathematical derivation in this section provides an automatic de-
on the locations of the interfaces, i.él;, andM, depends only termination for the locations and magnitudes of all the image
on the reflection and refraction coefficients, itg,, s{ , andsj.  forces.

Only one term in the infinite series of E(B4) represents the  Since the solutions in the transformed domain expressed in Eq.
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e~ @(YEHEFRY) g-ieH’ gioXq,

(34) are exponential functions ab, only two different inverse *
Fourier transformations for exponential functions are required, J

which are -
© _1
f e~ @(YEHEFY g=ioH' gioXq =Eln[(X—H’)2+(YiHiFk)2]. (36)
1 Y+H+F, . . :
i — 5, Therefore, the inverse Fourier transformation for BBfl) can be
7 (X=H")*+(YEZH=F)) easily derived and the results are
|
( Y—H+F¢ Y+H+FC )
—tam =t tan
) an X—H'
0 N z d’ q”
, M, L YFHHEFY Y-H-F]
= —_— +tan tan
W ;, 21 p- X—H’ X—H’ g
IN((X—H")2+(Y=H+F{)2)+In((X—H")2+(Y+H+FE)?)
z k k
[ 2#m| +In(X=H")2+(Y+H=F{)2)+In((X—H")2+(Y—H-F{)?) | @7
—(X=H") . (X=H")
(X=H)Z+(Y=H+FE)?  (X—H")?+(Y+H+F{)?
1. (X=H") (X—H")
O e, (X=H")2+(Y+H-FZ)2 (X—H")2+(Y-H-F{)?
J , '
Tvz ;)2:1 w Y—H+F¢ Y+H+FS
—+ ;
f, | (X=H)2H(Y=H+F{)? (X=H")2+(Y+H+F})?
Fim Y+H-F Y-H-FY
—+ ;
(X—=H")2+(Y+H-F)?  (X—H")?+(Y—H-F])?

Finally, by substitutingXx andY defined in Eq(15) into Eq.(37), dium, the thickness of each layer is the same and equal to 1, and
and using the displacement and stress relations in(Hifj, the the elastic stiffness constants for each layer are listed as follows:
complete solutions for the original problem of the anisotropic y
multilayered medium can be obtained. Equati&d) is the ex- [CasCis Cos Ci4CisCls . . . :Ca7.C35,Cidl
plicit expression of the Green'’s function for the multilayered me- . .
dium subjected to the antiplane shear deformation. =[3960,0,7170;7170,1220,3960;3960,
) ) ) —1220,7170;3585,610,3960; 3960,
7 Numerical Examples and Discussions
i . . . —610,3585;4430,0,0,4430;1980;0,1980;7170,1220,3585;
The full-field analysis of shear stresses in a layered medium
consisting of 12 layers subjected to interior forces is presented in  5158,-610,3585;3585,0,5185;3960,0,3960;6160,
this section. In the analysis of a nonhomogeneous multilayered
medium, it is sometimes the practice to treat the multilayered —2440,3330GPa.
medium as a single homogeneous layer with effective or hom e effective elastic constants for one homogeneous layer ob-
enized stiffness constants. The differences in the stress dlstrll?éd
ned from Eq(38) are
tions between layered medium with 12 layers and one homoge-
neous layer with the effective material constants obtained from = = R o4 _
the averaged material properties of 12 layers will be discussed in [Caa,Ca5,Cosl =[4347-169,4131GPa.

detail. The effective stiffness constants of one homogeneous laygh, antiplane body forcéd, is applied within the seventh layer at
CIl , are obtained from the homogenized weighted properties pf 0 andy 6.5. The dlstnbutlons of the shear stresgs along

the 12 layers using the formula the y-axis atx=0 andx=2 are shown in Figs. 4 and 5, respec-
tively. In addition, ther,, stress distributions along theaxis at
E C (P hy )+Ch x=0 andx=2 are displayed in Figs. 6 and 7, respectively. To

generate the shear stress distributions, the series solution is trun-
(38) cated if the numerical calculation is within the accuracy of 0.1
P percent.
As indicated in Eq(38), the effective stiffness constants are ob- As shown in Figs. 4 and 5, the multilayered solution fgy is
tained by averaging the stiffness constants over the thicknesscohtinuous at the interfaces and approaches zero at the top and
each layer. The complete explicit expressions for the displaceméottom boundaries. The results af, for multilayered solutions
and shear stress given in E¢85) and(37) are used to construct and one homogeneous layer solution are closely related-&,
the program for numerical calculations. For the 12-layered mand only a small difference appearsxat2. This implies that the

Cij=
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Elastodynamic Fracture Analysis

of Multiple Cracks by Laplace

Finite Element Alternating
w.-H.chen | IMethod

Professor,
Mem. ASME - . . .
The Laplace finite element alternating method, which combines the Laplace transform
C.-L. Chang1 technique and the finite element alternating method, is developed to deal with the elasto-
dynamic analysis of a finite plate with multiple cracks. By the Laplace transform tech-
C.-H. Tsaiz nigue, the complicated elastodynamic fracture problem is first transformed into an

equivalent static fracture problem in the Laplace transform domain and then solved by
the finite element alternating method developed. To do this, an analytical solution by Tsai
and Ma for an infinite plate with a semi-infinite crack subjected to exponentially distrib-
uted loadings on crack surfaces in the Laplace transform domain is adopted. Finally, the
real-time response can be computed by a numerical Laplace inversion algorithm. The
technique established is applicable to the calculation of dynamic stress intensity factors of
a finite plate with arbitrarily distributed edge cracks or symmetrically distributed central
cracks. Only a simple finite element mesh with very limited number of regular elements is
necessary. Since the solutions are independent of the size of time increment taken, the
dynamic stress intensity factors at any specific instant can even be computed by a single
time-step instead of step-by-step computations. The interaction among the cracks and
finite geometrical boundaries on the dynamic stress intensity factors is also discussed in
detail. [S0021-89360)02103-9

Department of Power Mechanical Engineering,
National Tsing Hua University,
Hsinchu, Taiwan 30043, R.0.C.

1 Introduction ([6]). It was found that the elastodynamic responses could be up to

When a stress wave is disturbed by the presence of crac O_percent higher than the static values depending on Poisson’s

some of the waves are reflected and others are refracted. Theregy gnaiytical approach which combined the Laplace transform
withal, the singular behavior in the elastodynamic stress &l method and Wiener-Hopf technique was developed by Frétind
is found around the crack tip. In general, the time-dependent d- deal with an elastic plate containing a semi-infinite crack sub-
namic stress intensity factor has a peak value higher than faeted to a concentrated tensile impact loading on the crack sur-
corresponding static value. These phenomena of scattering @ackes. Brock 8] took the Freund’s solution as the Green’s func-
singularity have received much attention in seismology, as well #sn to solve the problem with the impact loading distributed on
in some material testing techniques. Hence, the study of elastotlye semi-infinite crack arbitrarily. Since multiple integrals in-
namic response with the events of scattering and singularity Wlved in the formulation, only the dynamic stress intensity fac-
existing cracks under dynamic loadings becomes increasindfys are computed. Tsai and M&] used the Freund’s method
important. ([7]) to evaluate not only the dynamic stress intensity factors but
In general, the elastodynamic response for a finite cracked baly© the stress response of the same cracked plate, but with the
subjected to dynamic loadings is difficult to obtain analyticallyMmpPact loading distributed on the crack surfaces exponentially.
The analytical solutions for such problems are limited to simpli- It is noted that all those analytical solutions as mentioned above

fied cases with infinite or semi-infinite domains. Sih and Loebdf€r€ valid only for the problems with a crack in infinite or semi-

[1,2] made a detailed study of a finite crack in an infinite plane'[]ﬁnite domains. However, many of practical problems are a finite
str'ain plate subjected to plane harmonic compressive and shdomaln containing multiple cracks under complex dynamic load-

waves by an integral transform method. Ma] used a Fredholm f‘%&&gﬂsrany' they are difficult or nearly impossible to tackle
integral equation to yield the near-field as well as far-field stressesymerical methods have been proven to be efficient tools in the
of Sih's problem under a harmonic compressive wave. Thau aggtermination of dynamic stress intensity factors for general ge-
Lu [4,5] investigated the mode | and mode II dynamic stress imetry as well as complex dynamic loadings. Among the numeri-
tensity factors of a finite crack in an infinite plane-strain platgal methods, finite difference method10]), finite element
subjected to plane dilatational and horizontal shear waves incideméthod([11-13), and boundary element meth@d 4,15]) have
on the crack surface by a generalized Wiener-Hopf techniqbbeen adopted to analyze the elastodynamic fracture problems. But,
numerical experiments indicate that the accuracy of the dynamic
Icurrently, Engineer, Opto-Electronics & Systems Laboratories, Industrial Techtress intensity factors computed by these methods is strongly

nology Research Institute. o mesh dependent. In addition, to the author’s best knowledge, very
Currently, Associate Professor, Hua Fan University. little work has been done for the elastodynamic analysis of mul-
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF tinl K

MECHANICAL ENGINEERS for publication in the ASME QURNAL OF APPLIED Iple cracks.

MECHANICS. Manuscript received by the ASME Applied Mechanics Division, June The present Laplace finite element alternating method, which
7, 1999; final revision, Dec. 26, 1999. Associate Technical Editor: A. K. Mal. Disscombines the advantages of the Laplace transform technique and

cussion on the paper should be addressed to the Technical Editor, Professor Lewi T ; ;
Wheeler, Department of Mechanical Engineering, University of Houston, Houstolﬁ:'E finite element altematmg procedure, is thus proposed to deal

TX 77204-4792, and will be accepted until four months after final publication of iWith the elastodynamic analysis of a finite plate with .multiplg
paper itself in the ASME GURNAL OF APPLIED MECHANICS. cracks. By the Laplace transform technique, the governing partial
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differential equations as well as the corresponding time-dependent
boundary conditions can be transformed an equivalent static prob-
lem in Laplace transform domain. Thereafter, the solutions in the
Laplace transform domain can be solved easily by the finite ele-
ment alternating method16]). The so-called finite element alter-
nating method which is the combination of the conventional finite
element procedure and the Schwarz-Neumann alternating tech-
nigue has been successfully developed for two-dimensional
([16,17)), three-dimensional[18—20), and plate bending[21])
static fracture problems with multiple cracks. The real-time re-
sponses are then computed by the numerical Laplace inversion
algorithm of Honig and Hirdef22].

When carrying out the finite element alternating procedure in
the Laplace domain, the Laplace domain analytical solution of an
infinite plate with a semi-infinite crack subjected to an appropri-
ately distributed loading is necessary. However, the analytical so-
lution of Brock[8] is difficult to be applied for the present tech-
nigue because multiple integrals are involved in the formulation.
Also, the limitation of the Laplace parameter used in Tsai and
Ma's solution ([9]) restricts its direct application and necessary
modification is done in the present analysis.

The studies of the work includgl) the computation of the
dynamic stress intensity factors for a finite plate with arbitrarily
distributed multiple edge cracks or symmetrically distributed mul-
tiple central cracks under impact loadings, &2dthe effect of the o ) o )
cracks and finite geometric boundaries on the dynamic stress fjig: 1 An infinite plate with a semi-infinite crack subjected to
tensity factors. Only a simple Laplace finite element model Witﬁxponentlal normal and shear tractions in the Laplace domain
very limited number of regular elements is required. Besides,
since the size of time increment can be taken arbitrary, the dy- ) ) o )
namic stress intensity factors at any specific instant can even 'B§ersion algorithm([22]) is adopted in this work. By this method,
determined by a single time increment. The present technig@iesequence of selected complex Laplace paramefers +iwy
established will be helpful for the development of seismology k=12, . . .N) instead of the real and positive Laplace parameter

nondestructive testing technique to detect the presence of craPksv. as taken in Tsai and Ma’s work9]), need to be adopted
in material. to obtain the real-time response at a specific insi@ee the

Appendiy.
. , . To confirm the Laplace parametprto be a complex number,
2 Tsai and Ma’s Solution ([9]) the Tsai and Ma’s Solutiof[9]) is rewritten as

During the operation of the finite element alternating proce-

. . . . . {p+iw
dures in the Laplace domain, to simulate the traction-free condi- ;. (x, x,p)= 5 [UX(p, . 7s,£)e @2t ou
tion on the crack surfaces, it is necessary to release the stresses at TR ) =i
the location of fictitious cracks in an uncracked plate. Although ) ot i
Tsai and Ma’s solutiof{9]) can provide relevant stress field at the +UF(p, v ms, §) e P2 dd (1)

fictitious crack, the solution cannot be applied to the present tect}q
nique directly because the Laplace parameté& constrained as

real and positive. _ T ot o
For clarity, the Tsai and Ma’s solution is first briefly stated as ~ 7ij(X1.X2,P)= 5—= . [Si(P N ms, )@ 270
follows. In the Laplace transform domain, as seen in Fig. 1, con- !

sider an infinite plate containing a semi-infinite crack subjected to +3|2](p, N, s, L)e PRt i]dg 2)
an exponentially distributed normal tractieA”~*1 and shear trac-
tion eP7$*1 on the crack surfaces{(»<x;<0). These tractions
are transformed from real-time tractions by one-sided Laplace Sh:(bzpz—242)(b2p2—2a2)a+(p7m)':(P7]N,§)/a+(§)
transform with respect to time. The one-sided Laplace variable
p=v+iw is a complex with its real and imaginary pantsandw. —2B_(0L(b%p*—2a%) B, (P1s)F(P7s.L),
nn and ng are complex numbers for describing the prescribed > 5
tractions. Since such a mixed boundary value problem is exceed- Su=—4a- (OB a (P F (PN, L)
ingly difficult to solve in the Laplace domain, Tsai and V& _92 b2p2— 242 E
used two-sided Laplace transform with respeckidn conjunc- AP E)B-(PuslF(P7s. L),
tion with the application of the Wiener-Hopf technique under the Sh=—2a_({)a, (pyn) {(b2p?—22)F(pyn,0)
assumption that the variabfeis real and positive, sayp=v (v )
>0). +4aB_(§)B+(pPns){F(p7s,{),

Based on the displacement;(x;,%X,,v) and stress field 2 _ 2.2 542
Ti;(X1,X2,0) in the Laplace transform domain derived by Tsai Siz=2a- (O (pa)E(b°p =289 F (P . ¢)
and Ma[9], the Laplace domain solution for the problem with +(b2?p?=27%)2B.(pns)F(pns,O)I B4 (L),
distributed loading applied on the semi-infinite crack can then be . - -
superposed from them. To obtain the real-time response, the  Sy=(b“p =2 (pyn)F(PyN. O/ a ()
Cagniard-de Hoop’s methdi23]) is employed, but is valid only 2 2 2
for the problem with infinite domai{9]). However, for the real- —2{(b%p =29 B-(DB+(Pns)F(P7s.£),
time response of the elastodynamic fracture problems with finite 2 A2 =
geometric boundary, it is very difficult to obtain analytically. So= 4l (DB e (PmF (P, {)
Hence, to solve such complicated problems, a numerical Laplace +2L(02p?= 22 B_ (D) B+ (P1s)F(p7s.{),

where
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Ul=2(b?p?=28) a (p)F(pan. Ol i () latter cracked solutions can be determined by substituting the co-
ordinates of the same finite geometric boundary as the equivalent

—20%B_(0)B+(pns)F(P7s.L), static fracture problems into the analytical solutidtis and (2).
. (The detailed procedures are referred to Chen and CHeflg
Ui=—2a (e, (pm)BOEF(PIN.E) Consider a real-time two-dimensional isotropic uncracked plate
—(b2p2—272)3_ F ), with prescribed traction;(t) over the boundang, and displace-
(07 VB (DB (pnsF(P7s.0) mentu;(t) over the bouhdar;Su. Neglecting the body force, the
U%= —a_(Da,(pyy)(b2p?2=25)F(pyn . L) functional which governs the elastodynamic response of the plate
can be described by the Hamilton’s principle in finite element
+2LaB (0B (Pns)F(P7s.{), approximation as
and t 1 T
U2=—2a_(O)a. (pyn) L2F(pon.0) I(ui(t)= jtl % [ fAm(EEijkl €j(Deq(t)— zpui(t)ui(t) dA
—4{(b?p?=28%) B+ (PR F (P75, )/ B+(0). B
In the above, - L ti(t)u;(t)dS|dt, (5)

F =112(b*p?—a%p?)(pn— - +
(p7,0)=112(b"p"=a’p")(pn—{)(cp=L)(cptpn) whereA,, is the area of elememt, Somisthe boundary of element

XS_(§)S.(pn)], m where the tractiort_i(t) is prescribed, and;;, is the elastic
1 tensor.u;(t) andu;(t) denote the element interior displacement
S.({)=exp —— and_ velocity, res_pectively.eij_(t)=1/2(1_Ji'j(t)+_uj'i(t)) _is the
™ strain tensor ang is the density of the isotropic material.

The element interior displacement(t), velocity U;(t) and
202 A2 2\12(h2 "2 _ £2\1/2
4¢7(¢7—a’p’) H(bp &%) d¢ ] strain €;;(t) can be approximated in terms of elemerl1t nodal dis-

bp
xf tan !
ap

(b*p?—2£%)° Exyg placementy(t) and velocity¢(t) as(in matrix form)
a()=(a%p*= )2 a (H)=(ap+ )™ a (H)=(ap-{)* {u=[NHKa}, 6)
B(O)=(b?p?— A2, {ui=[N}{a}, (7)
B(O)=(bp+ ¥ and B_(§)=(bp—)*?, and
and{ is the variable of the two-sided Laplace transfoenb, and {ej}=[Bl{a}, ®)
¢ denote the slowness of the longitudinal, shear, and Rayleigihere the matrifB] is the spatial derivative of the interpolation
waves, respectively. function[ N]. Substituting Eqs(6)—(8) into Eq. (5), following the

In the Laplace transform domain, since the piecewise contingeneral finite element formulation procedures, the simultaneous
ous normal and tangential tractions on the crack surfaces candiginary differential equations are obtained as

superposed by a series of exponential loadieffs*1 andeP7s*1,

the complete analytical solutions of the displacement and stress [M*Kg* (O} +[K* Ha* (O} ={F* ()}, ©)
can be thus superposed from E¢b. and(2), respectively. where
The mode | and mode Il stress intensity factors in the Laplace

transform domairK,(p) andK, (p) are thus found as [M*]= 2 j p[NTTIN]dA,

- a. (P " Am

Kilp)=-v2 p(C+7;N)S+N(p7]N) ' ®)

[K*]=2 f [BI"[Eqj][BIdA

and m JA,

~ B (p7ns) and

K =—V2— 4

1P = Y 795, (P79 )

To demonstrate the validity of the analytical solution, the nor-
mal tractioneP™N*1(p=1+i,ny=1) is applied on the crack sur-
faces. The stres&,,(—1,0,1+i) and the displacemefit,(1,0,1 {g*(t)} and{g*(t)} represent the global nodal displacement and
+1i) computed are found as 0.1986.3095, and 0. There are in acceleration vectors.
good agreement with the normal tractioe ' ' (=0.1988 To transform the simultaneous ordinary differential equations
—0.3096) at (—1, 0) and the displacemefit,(1,0,1+i)=0 due t0 a set of linear algebrai~c equations in Laplace domain, the one-
to symmetry. sided Laplace transfornf(x;,x,,p) of a real-time response

f(Xq,X5,t) is defined by

[F*(t)]:g L [N]™{t,(H)}dS.

%0

7(x1,x2,p):f f(x,,X,,t)e”Pldt, (10)

3 Laplace Finite Element Formulation 0

As a complicated elastodynamic fracture problem is first trangserep is the one-sided Laplace parameter, which is a complex
formed into an equivalent static fracture problem by the Lapla@s mentioned in the previous section.
transform technique, the finite element alternating procedure de-After taking the one-sided Laplace transform on E).under
veloped here is performed to obtain the solution of the equivalepéro initial conditions{g* (0)}={g* (0)}={0}, Eq. (9) becomes
static fracture problem using a successive, iterative superposition -
of sequences of solution. The sequences of solutions are con- [K*(P)a* (p)}={F*(p)}, (11)
structed by some simpler uncracked and cracked problems. -Wﬁere
former uncracked solutions in the Laplace domain can be com-
puted by the Laplace finite element model as stated below. The [K*(p)]=p[M*]+[K*]
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Fig. 2 Analysis of the elastodynamic fracture problem

and solutions of the problems with specific boundary conditions,
which are computed by a conventional finite element procedure

[T:*(p)]:E f [N]T{atT(p)}dS and/or available analytical solution. Finally, the real-time re-
m Js, sponse can be achieved by using the numerical Laplace inversion

o - ) ] algorithm ([22]). For completeness, several main steps are stated
By dividing the complex quantities of E¢L1) into their real and pg|ow:

imaginary parts, a set of linear algebraic equations are formed as ) )
. . _ ~ 1 For a selected instarif, an optimal parametes, can be
[Kr(P] —[KF(p)] {{Q§(P)}] _[{F’F‘{(p)}} 12) chosen by the method of Honig and Hird@2] (see the Appen-
K* K* T* R dix) and a sequence of Laplace parametpgs-v,+ikm/r(k
[KF(p)]  [K&@] JUar (@} [{Ff(p)} —12....N) are determined.
where 2 For each of the Laplace parametgigk=1,2, ... N), the
% o R governing equatiofEq. (13)) and boundary conditionsee Fig.
K (P)1=[Kr(PIFHIKT(P)], 2(b)) of the equivalent static fracture problem in the Laplace

T* ={G* +ifg* , transform domain are obtained.

{7 (P} ={AR(P)y+ T (P 3 Based on the finite element alternating procedure as de-
scribed in detail in Chen and Chafg6], the Laplace transform
displacement, stress, and stress intensity factors for the selected

= =, — Laplace parameteqn, are computed.

{F*(p)}={Fr(P)}+i{F (p)}. 4 Once the Laplace transform domain solutions of all the

The transformed displacement vectdig:(p)} and {G* (p)} Laplace parameters, are solved, the corresponding real-time re-

can be evaluated numerically by the Gauss-Jordan method forPpHS€ of the elastodynamic fracture problem at the selected in-
sequence of selected I}/apI};ce parametepg=o +w, (K stantt; can then be obtained by E@A\4) as stated in the Appen-

=1,2,...N). Finally, the numerical inversion scheme to inversg'xs'
the Laplace domain solutions for all the selected Laplace param-
etersp to those of the real-time response at any specific insta
can be carried out by Honig and Hirdgz2].

and

For the elastodynamic response of another instant, repeat
ps(1) to (4).

6 Repeat stepfl) to (5) until the desired time history is per-
formed.

It is worthwhile to mention that the choice of the sequence of
4 Laplace Finite Element Alternating Procedures the Laplace parameters, depends on the selected instant only.
Hence, the real-time response of any instant can be solved directly
thout computing the response of other instants. For the same
ason, the accuracy of the solutions obtained by the present tech-
que is independent of the size of the time increment taken.

The Laplace finite element alternating method, which combin
the merits of the Laplace transform technique, finite element 3k
ternating procedure, and the Laplace inversion algorithm, is est
lished to analyze the elastodynamic fracture problems with mu
tiple cracks and explained here. Consider a two-dimensional finite
domain containing multiple cracks subjected to dynamic loadings
as shown in Fig. @). By the Laplace transform technique, th . .
complicated elastodynamic fracture problem is first transform Results and Discussions
into an equivalent static fracture problem in the Laplace transformTo evaluate the accuracy and versatility of the Laplace finite
domain as shown in Fig.(B). The finite element alternating element alternating procedure developed, several elastodynamic
method can be used to obtain the solution of the Laplace trarfisacture problems with multiple edge and central cracks under
form domain equivalent static fracture problem using a succesansient loadings are analyzed. The phenomena of the overshoots
sive, iterative superposition of sequences of solutions. The sd#-the dynamic stress intensity factors and the interactions of the
guences of solutions are constructed by some known simpfress waves between cracks and boundaries are also considered.
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Example 1: A Rectangular Plate With an Inclined Edge 0 5 0 3 20

Crack. A finite plate with an inclined edge crack under uniform
Heaviside tensiorrN/m? is first analyzed as shown in Fig. 3. ] ) ] ]
Twenty-four eight-node isoparametric quadratic finite elemenfdd: 4 The normalized dynamic stress intensity factors of the
are taken in the Laplace transform domain. Since the equival@fPPlem with an inclined edge crack

static fracture problem is solved in the Laplace transform domain,

the constraints of the size and shape of elements for elasto@)é-nerated by the loaded edges are at different times, and the dy-
namic problem are not necessary. The problem was also studigghic stress intensity factors of craBlare less than the values of

by Dominguze and Galleg[l5] by a boundary element methodcrackA due to the resistance of the stress wave by the chadk

with time incrementAt=0.4us. The material properties are:also shows that the dynamic stress intensity factors of chack
shear modulug.=29.4 GPa, Poisson’s ratie=0.286, and den- increase due to increasimgL. The dynamic stress intensity fac-
sity p=2.45<10°Kg/m*® and the longitudinal wave speed,
=4.60x 10° m/s. Figure 4 shows the variations of the mode | and |
mode Il dynamic stress intensity factors normalized dayma. r w i
Two different calculations by the time increments &f=1 us

(20 time incremenysand At=5 us (four time incrementsare !

made and both are in good agreement with the reference solution.
It is noted that the dynamic stress intensity factors remain zero
until the longitudinal wave arrives at the crack (i93.48 us). A

t(usec)

L / 2@
Example 2: A Rectangular Plate With Four Inclined Edge A
Cracks. To estimate the interation effect among cracks and the T
finite geometrical boundaries on the dynamic stress intensity fac- e
tors, a plate containing four inclined edge cracks subjected to _144;
uniform time-dependent Heaviside loadings at the top and bottom
e

B
surfaces is considered. The material properties are: the Young's /}
modulus is 68.95 GPa, the Poisson’s ratio is 0.333, the mass den- %
sity is 2.76<10°Kg/m® and the longitudinal wave speed, S 8
Z 1 ]
=6.12x 10° m/s. Due to symmetry, only one half of the problem 22=30.5mm
is solved as shown in Fig. 5. Forty-five Laplace eight-node iso- L W=1=50.8mm
parametric finite elements in a Laplace domain are used. The nor- ©=30°

malized dynamic stress intensity factors at crack AigsdB with
changing distances/L =0.2, 0.4 and 0.6 are plotted in Figs. 6 and
7, respectively. It is noted that ttewave from the loaded edge
that impinges on the crack generates a reflected wave and a s o e 0 B
scattering wave so that the stress wave on cBablecomes more Fig. 5 A rectangular plate with four inclined edge cracks un-
complex. The times of arrival at crack tipsandB of the P-wave der a Heaviside loading
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Fig. 8 The Laplace finite element mesh of the finite plate with
a central crack

tors of crackA are enhanced by the propagation and scattering of

stress waves between boundaries of the plate and étack

Example 3: A Rectangular Plate With a Central Crack distributed central cracks, a rectangular plate with a central crack
Subjected to Heaviside Loading. To demonstrate the applica- Subjected to Heaviside loadings at the top and bottom boundaries
bility of the present technique to the analysis of the symmetricalf}f the plate as shown in Fig. 8 is analyzed. Due to symmetry, only

Kigs - L

Kias

0 10 20 30 40

t (usec)
Fig. 7 The mode Il dynamic stress intensity factors of the four

inclined edge cracks for the cases of

Journal of Applied Mechanics

e/L=0.2, 0.4, and 0.6

one quarter of the problem is solved. Hence, the problems with
symmetric central cracks can be treated as the problems with edge
cracks. Twenty-four Laplace eight-node isoparametric quadratic
elements are used. The material properties are as follows: the
shear modulug.=76.9 GPa, the Poisson’s ratio=0.3, and the
density p=5.x10° Kg/m®. In Fig. 9, the normalized dynamic
stress intensity factors for different crack leng#isv=0.25, 0.5,

and 0.75 are plotted, and good agreement is found for the case of
a/W=0.25 with available results obtained by [24] using the
Gurtin variational Principle. In Fig. 9, the symbB}, denotes the
time required for the incideri®-wave from the loaded edges to the
crack tip, which can be computed lakc,=2.73us. TheP, value

of the present computed response is 2@65us as compared
with 2.30 us obtained by L{24]. R, is the time required for the
first Rayleigh wave to arrive at the crack tip considered; (
—P;) and (S, —P,) mean the times of the scatterBevave and
Swave to travel from the crack tip to the nearest boundary and
back. P, is the time for the incidenP-wave reflected from the
opposite boundary surface, and return back to the clRgkP3,
andS; caused by the secondary excited wave are introduced in a
manner analogous ®,, P;, andS;, respectively. The dynamic
stress intensity factors of the three cases remain zero until the
P-wave has arrived B,) from the loaded edges. Although the
peak values of the dynamic stress intensity factors of the three
cases take place at different times and possess different values, the
character is the same. That is, the dynamic stress intensity factors
reach a peak value higher than the corresponding static value and
the peak value which happenes during the first and second Ray-
leigh wave arriving the crack tip. The corresponding static stress
intensity factors are 1.05, 1.20, and 1.62 for the casea/@f
=0.25, 0.5, and 0.75, respectively. From the one-step solution
obtained, it is concluded that the size of the time increments taken

SEPTEMBER 2000, Vol. 67 / 611
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Fig. 9 The normalized dynamic stress intensity factors of the I RS N AU N N
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Fig. 10 The Laplace finite element mesh of a finite plate with

. . . . . parallel triple cracks
in the present technique can be arbitrary. It is mentioned that, as

seen in Fig. 9, some negative dynamic stress intensity factors are

observed due to the lack of accounting for the dynamic contact Ep

. ) ; aviside loadings are analyzed. They include H-t e(a
the crack surfaces. However, to the principal authors’ experien §d coIIinear(casg(b)) permu%/ations of Zracks. Howe%%lﬁ a(ls))seen

([13]), as far as the peak dynamic stress intensity factors are clizjg ™13 "the same Laplace eight-node isoparametric finite ele-

cerned, the mathematical crack surface interpenetration canRgnt mesh is used. The normalized mode | dynamic stress inten-
ignored. sity factors of the crack tig\ for different permutations of cracks

Example 4: A Rectangular Plate With Parallel Triple
Central Cracks. In order to estimate the wave propagation
among cracks, a finite plate with parallel triple cracks subjectedt 2.5 L
Heaviside loadings on the opposite sides of the plate as shown
Fig. 10 is analyzed. Twenty-four Laplace eight-node isoparame
ric quadratic elements are used. The normalized dynamic stre
intensity factors of the crack tig\ for different distances/L
=0.1, 0.2, and 0.5 and/W=0.25 are plotted in Fig. 11. The
symbolst,, t,, andt; on the time axis denote the different times
for the incidentP-wave arriving at the crack tip from the loaded
edges for the caseflL =0.5, 0.2, and 0.1, respectively. It is worth ;
noting that the crack tip\ exists a mode Il dynamic stress inten-
sity factor due to the scatter&dwave traveling from the crack tip
B, and the values are enhanced when the upper crack gets clo
ty4, ts, andtg denote the time of arrival at the crack #pof the
scatteredP-wave from the crack ti8 of the case®/L=0.1, 0.2,
and 0.5, respectively. In Fig. 12, the peak value of the normalize ~ ©:5
mode | dynamic stress intensity factors of the crackBtipcrease
due to the increasing distaneeAs the distance is large enough,
the peak value of the normalized dynamic stress intensity facto
of B converges to the value of a single crack as shown in Fig.
(for the case od/W=0.25. It is noted that the upper crack can be
considered as a barrier to reduce the dynamic stress intensity fi _ 0.5
tors of the middle crack. The CPU time for computing a single =
time instant by 586 P@Pentium 20D is about 48.4 seconds. =

N
o
T

1.5

lized K[dA

Norma
o

0.0

0.0 1 1

Example 5: A Rectangular Plate With Different Distribu-
tions of Triple Cracks. Based on the previous example, obvi-
ously there exists an unexpected fracture mode due to the inter:
tion of cracks. To further estimate the influence of differen.
distributions of cracks on the dynamic stress intensity factors, thg). 11 The normalized dynamic stress intensity factors of
problems with different distributions of triple cracks subjected torack tip A of the finite plate with parallel triple cracks

t(usec)
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Fig. 12 The normalized dynamic stress intensity factors of

crack tip B of the finite plate with parallel triple cracks Fig. 14 The normalized dynamic stress intensity factors of the
crack tip A for different permutation cracks

are compared in Fig. 14. The normalized mode | dynamic stress

intensity factors of the crack 1 for the cage are consistent with

those of the caséb) until the time ¢,) of arrival at the crack tip @s crack 3 are plotted in Fig. 15. The symbtjsandt; on the

A of the reflectedP-wave from crack 2. The peak value of thetime axis denote the time of the incidéPwave to arrive at crack
crack tip A for the case(a) is lower than that of the casgw) tip C (case(b)) and that of the scatteré@wave from the crack tip
because the crack 2 resists the reflected waves from the righto the crack tipB (case(a)), respectively. It is found that the
boundary. There are two unexpected fracture modes on the cr&g@k value of the normalized dynamic stress intensity factors is
2 due to the scattered wave which arrived from the crack 1. TH€pendent on the plate configuration as well as crack permutation.
normalized dynamic stress intensity factors of the crack 2 as well
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Fig. 13 The Laplace finite element mesh of the finite plate with Fig. 15 The normalized dynamic stress intensity factors of the
different permutation triple cracks crack tip B and C for different permutation cracks
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6 Conclusions and Recommendations ot

e

Based on the present Laplace finite element alternating proce- Fi(N,v,t,7)= T
dures established, the calculation of the dynamic stress intensity
factors in a finite plate with arbitrary number/distribution of edge _
cracks or symmetrically distributed central cracks has been suc- —Im{f(pk)}sinwkt}}. (A3)
cessfully performed with a limited number of regular elements.
The solution is independent of the size of the time incremepfence, the approximate valig(t) becomes
taken and one can even determine the dynamic stress intensity
factors at any instant by a single time-step instead of step-by-step et
computations. The influences of the scattering waves on the dy-  fn(t)=—
namic stress intensity factors for several representative examples
are studied in detail. 7 :

According to results obtained, it is found that the dynamic IM{f (P} sinwit]. (Ad)
stress intensity factors computed exhibit the similar characteris-The discretization errof4(v,t,7) as shown in Eq(A2) can be
tics. They remain zero until the time of arrival at the crack tip ofmade arbitrarily small if the produetr is sufficiently large. How-
the incident wave, and reach the peak values higher than the c@ver, the truncation errdf,(N,v,t,7) as seen in EQA3) may be
responding static values, then fluctuate about the static values wiitiergent for a large) 7. An appropriate choice of parametsr
a decreasing amplitude. In addition to the length, number, aagdv 7 is very important not only for the accuracy but also for the
distribution of cracks, the peak values of the dynamic stress idonvergent rate of an inverted solution. The Honing method al-
tensity factors are also dependent on the finite geometric bourh@ws a reduction of the discretization error without enlarging the
aries significantly. They may exist an unexpected fracture motf@ncation error by an optimal choice of the parameteiThere
due to the complicated wave propagation. are two methods proposed to determine the optnfdr a fixed

To widen the applicability of the technique, once an analyticy and . The methodA is to make the absolute values of discreti-
solution for an infinite plate with a central crack subjected tgation errorF4(v,t,7) and truncation erroF(N,v,t,7) equal.
arbitrarily distributed loading on the crack surfaces in the Lapladéhe methodB is to make the sum of the absolute values of dis-
domain is achieved, an extension to arbitrarily distributed centrefietization and truncation error minimal. Further, according to the
cracks would be recommended. Moreover, this technique can gmerical experiments of this work, sufficient accuracy can be
extended to the possible application to the NDT technique to prachieved at any time instant dls= 60~ 100 for an optimal choice
dict the presence, length, position, and orientation of cracks bfthe parametes.
studying the wave patterns in cracked bodies.

{ > {Re(f(po}coswyt
k=N+1

1 S
— 5 Relf(w)}+ 2, [Re(f(pocoswt
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The Top With a Blunted Vertex upon careful consideration. Such a top is shown in Fig. 1, with a
. . . . .. truncated vertex of radiug. The top is assumed to be axially
Sllpplng With nght Friction symmetric with axial and transverse centroidal moments of iner-

at a ngh Rate of Spln tia, I , andl 1, respectively. The stem length of the top from the

centroid to the truncated vertex is assumed to be large compared
to the vertex radiusa. It is further assumed that the top is spin-

P. C. Paris. L. Zhang and H. Tada ning rapidly enough that the friction forcg, will be perpendicu-

- . . . . lar to the axis of the top. The position of the point directly below
School of Engineering and Applied Science, Washmgtonme mass center is denoted, Z, and the contact point is a dis-

University, St. Louis, MO 63130-4899 tance,d, away. This distance and the heightof the mass center
above the plane of contact are

- . . . d=Isinf—acosé
The problem of determining the motion of a top is a classic ex- 2)

ample of a complex analysis in analytical dynamics. Adding a h=1 cos@+asin .

blunt tip to the top and setting it spinning on a surface with ) ) ) ) )
sliding friction might be thought to render it intractable for simple Taking the differential of the latter expression gives
analysis. However, if it is set in motion with a high rate of spin it . . . .
is possible to find a simple approximate solution for the case ¢=—(sin6)56+a(cosf)56 or h=—Idsino+afcose.
approximate steady precession. For this pseudo-steady motion ifrhe other two perpendicular components of velocity of the
will be noted that the rate of diminution of the nutation will alsqy 555 center ar and Z. The angular velocity components of
be almost_ constant. Further, the _ratlo of these rgt_es (Iatte_r OVelhe body may be expressed awith the y-axis remaining
former) will be equal to the negative of the coefficient of frictio

© & horizonta
for the top slipping on the surface. As a consequence the mass )

center of the top will tend to proceed around a steady circle above wy= i+ ¢ coSh

the plane. These results will first be observed by writing the full

Lagrange’s equations for the problem and reducing them prior to wy:@ 2
integration by observing appropriate approximations by deleting

relatively smaller terms. The above results will then follow di- w,=dsing.

rectly. Further, the full Lagrange’s equations will be numerically o ] )
integrated to show that the analytically developed approximate The kinetic energy may then be written in the form
results are appropriate. Once these results are known, it is ob-

served that a subsequent intuitive analysis based on time rate of T= lm[(,| sin 6+ a cos#)262+ Y2+ 72

change of angular momentum leads to the same results, if only the 2

angular momentum about the spin axis is considered with other | |

relevant assumption§S0021-8936)0)00203-§ + EA (p+ ¢ cosh)?+ ET (6%+ @2 sir? 9). ®3)

The motion of a top with a slightly blunted vertex in contact
with a horizontal surface with continuous frictional slipping due The generalized forces, from the work rates of inde-
to a high rate of axial rotation, compared to precession and nufgndent instantaneous variations of each coordinate, are found
tion rates, is a tractable problem. There are few examples whesebe
frictional slipping allows a direct solution for the main behavior

with the use of Lagrange’s equations. This example is offered _ —mgoh .
. - ¢=——=—=+mg(l sihnd—acosh)
here to encourage attempts of analysis of such problems, which 66
might look implausible at first glance, but which yield a solution
Fdé¢ | sing p
= =pum neo—
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FyoY _

Y= 5y~ _mmgsiné
F,6Z

2=—5; = MMgCos$

assuming the vertical acceleration is very small and the fric-
tion coefficient. From these forms, Eq8) and(4), the ingredi-

ents for the basic form of the Lagrange’s equations are availat

THE BLUNT TOP

INPUT DATA: m=1 g=10 =1

[,=033

a=0.01

IA=O‘5 /l=01

50 T T

true spin

Q=+ ¢cosd

theia dot

time

( secor}ds )
APPROXIMATE SOLUTIQN GIVES: 6= .u¢
7] :
=—= 0.0404 =0.1036
0.390

AS COMPARED TO 0.1000 INPUT VALUE.

and may be employed. Recall that this form of Lagrange’s equa-

tions is([1])
d(dT aT
dt\aq,/ o9,
The five resulting Lagrange’s equations follow:

=Q, for (q,=0,4,4.Y,2). (%)
d_ . , . o .
gillro+ m(—1 sin6+a cos6)20]+ 1 A(¢f+ ¢ cosh) ¢ sin b

—11¢?sin@ cosf+m(—1 sin §+a cose)

X (I cosf+asin 0)92:mg(l sin§—a cosh) (6a)

d .o .
&UA(!//'F ¢ cosh)cos+11¢ sir? 0]= umg(l sin 6—a cosb)

(6b)
d S
gil1aly+ ¢ coso)]=—pumga (60)
d .
giLmYl=—umgsiné (6d)
d .
gi[MZ]=umgcosd. (6e)

Fig. 2

0,¢,¢ as functions of time. Once that is donedp@nd 6€) are
easy to attack. Consider first the second equatids), 6 light of
the above inequalities, and it becomes

d
a[lAQo cosf]=umglsiné.

Differentiating as indicated and canceling glgives

1AQp0=— umgl. (7)
Integrating this expression gives
B pumgl
0= 6, JON t. (8)

Equation (8) shows that, starting from its initial valué,, 6
will diminish approximately linearly with time until the top

is standing straight up. The predicted time for this behavior from

Eq.(8) is
1046,
" umgl

stituting this approximately constant valuedofrom Eq. (7)

©

te

. . . . Sub
Now these equations of motion appear to be quite formidable, afP'Ho the first full equation of motion(1), and also neglecting

not at all attractive for solution. However, it is observed from th
motion of tops that if a high spin raté=(),, is induced initially,

then by comparison the precession and nutation rateand 6,
will be relatively small. That is

b=0y>>,6.

ferms which are relatively small according to the above inequali-

ties leads to

. mgl
¢=m- (10)

As observed from Eqg7) and (10), the precession and nutation

In addition it is noted that rates obey the simple relation:

|>>a. 6=—we. (11)

Armed with these relative sizes, Eq®) may be reconsidered. It is further noticed that the radius of the blunt vertex is not found
Notice that the first three equations of motiore)(6(b), and in these relationships. This fact implies that an arbitrarily rounded
6(c) do not involveY or Z and stand separately for the solution fovertex will have the same effects as long as the coefficient of
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friction, u, remains relatively constant and slip continues to OCClNonsingu|ar Boundary |ntegra|

as the motion progresses. Indeed tops generally exhibit this tE . : -
havior pattern for high rates of spin! Further putting these resullsUations for Two-Dimensional

into the last two equations of motio¥) and(5), implies that the ; ; .
vertical projection of the mass center on tkieZ plane will de- Anlsotroplc EIaStICIty
scribe a circle.

K.-C. Wu
Professor, Institute of Applied Mechanics, National
Numerical Verification of Results Taiwan University, Taipei, Taiwan, R.O.C.

The full Lagrange’s equation§5), were programmed into Mat-
lab without consideration of the inequalities following Eg6).

Numerical evaluation of the coordinates as functions of time forRQonsingular boundary integral equations for two-dimensional an-
typically proportioned top were then performed, where initial consotropic elasticity problems are developed. The integral equa-
ditions for @ and ¢ were chosen as proportionally related foyn  tions can be solved numerically by Gaussian quadratures. A nu-
the approximate result&q. (8)). Figure 2 shows that the behaviormerical example is given to illustrate the effectiveness of the
with time is closely predicted by the approximate soluti@ys. integral equations[S0021-89360)00303-2
(7)-(11)). These results strongly support the concept that approxi-
mate solutions may be developed from rather difficult looking
Lagrange’s equation@n this case five nonlinear coupled secondi Introduction
order differential equationgo give simple and relevant results for
certain physical systems. The currently popular boundary element method is based on
displacement boundary integral equations in linear elastic solid
mechanics. The strain field is computed by differentiating the dis-
. . . placements analytically and the stresses are obtained from the
Physical Intuitive Method of Analysis strains through Hooke’s law. This method works well in the inte-
Once the approximate solution is known or observed, it sugor of the body, but at the boundary it gives rise to hypersingular
gests that perhaps a simpler solution may be gained by methd@€grals which cannot be evaluated accurately without special
less complex than the full Lagrangian method. Indeed, rephrasitigatment. For two-dimensional problems, Wu ef{ 4. proposed
the problem in terms of time rates of changes of moméfh, is @ new formulation of boundary integral equations using Stroh’s
a possible approach. In order to do that in a reasonably simpmalism for anisotropic elasticityf2]). The new formulation is
way, it is first important to observe that the angular momentugxpressed in terms of the tractions and displacement gradients,
about the spin axigc-axis) is assumed to be very large comparedvhich can be used to calculate the boundary stresses or strains
to those about the other principal axes of the body. Neglectirﬁ@j’eCﬂy-

those smaller angular momenta leads to The formulation of Wu et al. provides dual sets of boundary
integral equations that are linearly dependent. In principle either
[H]=H,= |A(l;,/+ ¢ cosf)=1,0 (12) set can be used for numerical implementation. Both sets, however,
=H, = .

contain singular integrals of Cauchy’s type so that principal val-
Hes must be evaluated. In this paper, the sets of boundary integral
equations are transformed such that the integrals associated with
the unknown boundary data are regularized. The transformation is
done by employing certain eigenrelations in Stroh’s formalism.
The integral equations can be solved using Gaussian-type integra-

Equating the applied moments about each of the axes to the ti
rates of change of this approximate angular momentum( £,

due to the angular rates, ¢, and(), leads to

M,=H,=—1,06=pumgl tion formulas directly without dividing the boundary into discrete
_ elements. This is particularly useful for problems with infinite
My= Hyg|AQ sindp=mglsing (13) boundaries. An example of an infinite anisotropic plate subjected

to collinear compressive line forces is provided to illustrate the

. . effectiveness of the numerical scheme.
M,=H,=1,0=—pumga

Note that in the far right-hand terms of Eq&3) additional terms 2 Nonsingular Boundary Integral Equations
of the order ofa as compared tbhave also been neglected. Now

it is seen that these results lead directly to Hg@$-(11) without
having to write and reduce the original Lagrange’s equatio
However, it is doubted that one would find or have confidence in 1 . ~

the correctness of this more intuitive method without already hav- Ed(x) = J [=W(X,X";Xc)d(X") +U(X,X";%c)t(x")]1ds’, (1)
ing known that a simple solution is possible as demonstrated by c

the Lagrangian method.

For two-dimensional anisotropic elasticity problems, Wu et al.
rdl] derived the following dual sets of boundary integral equations:

S100= f (V00X i%)d(X ) =W %) tx) 1ds', - (2)
Cc

Acknowledgment whereC is a smooth contour parametrized by the arc lersyith
=dulds is the gradient of the displacemanntt is the traction on
C, X(8)=(x1(8),X2(s)) is a generic point onC, Xc=(X4(S),

X5(S)) =dx(s)/ds is the unit vector tangent t€ at x,x’ is an
integration point, and

John L. Berneron first suggested this problem to the authors
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Herei= =1, andl is the identity matrix. The Barnett-Lothe
) (3) tensors are real. Moreovet, andL are symmetric and positive-

A . 1 2,(s) T
W(x,x";%c)=— —Im Al =—————)B
. definite. With Eqs(9), Egs.(1) and(2) can be combined to give

7, (s') =2, (s)

O s5%0) = — —im| Al 2L} o 4 L A »
(X,x";Xc)=——1Im 2(5)—2.(9) : (4) E[Sd(x)—Ht(x)]:fC (—W* (x,x";%c)d(x")
“ 1 Z,(s) T ~ "
g )= — — = . +U* (X, X" ;Xc)t(x'))ds’, 11
V(xx'i%c) == —Im B<z;(s')—z*(s)>B (5) ( t(x')) (11)
The direction of increasingis such that when describing a circuit ~[Ld(x)+S"t(x)]= f (—=V*(x,x";%o)d(x")
around the contour, the domain of interest is to the left. In Egs. 2 c
(3), (4), and(5), Im denotes the imaginary pak=(a;,a,,a3), . T ,
B=(by,b,,bs), and(2, (s)/z,(s')—z,(s)) represents the diag- —W*(x,x";%c) 't(x"))ds’,  (12)
onal matrix given by where
<—2*(S) > W (xx i) = — SR Al g 13
2,(s)=2,(s) R AT A A
4(s) . 1 2,(s)
_ 0 0 * TRe)=— — VAT
2)(s') ~z(s) U™ (xi%e) WR‘{A<Z;(5’)—Z*(5)>A 09
Zy(s) 1 5
= 0 _ 0 o reo \— 2,(s)
X5(s")—2,(S) V(XX Xc) = — ;R{ B<m> BT, (15)
0 ’rzi and Re denotes the real part. By expressifits’) as a Taylor's
z3(s") —z5(9) series abous’ =s, it can be shown that as —s,
with — 2(8) =x1(S) + PiXa(s) ~and  z,(s)=dz,(s)/9s=Xy(S) 2, 1 1 oz,
+pXa(s), k=1,2,3, and IfpJ>0. The complex vectors, by lim — =— 50— (16)
and scalarg, are determined by the following eigenvalue prob- o5l % (s'78) 22, s
lem: Substitution of Eq(16) into Egs.(13), (14), and(15) yields
Ny Ng ak)_ ak) 6 o 1
N NI by, =Pk by (6) I/|m W*(x,x’;xc)=—ml, a7
X —X
h
where P 1 1 #z.(s)\
N,=—T7IRT, N,=T°% N;=RT !RT-Q, lim U*(x,x";%c)= 5 —Ra A 55 % AT, (18)
X' —x *
Qik=Cim1: Rik=Cimz2, Tik=Cize 1 1 52.(s)
and Cyjy is the elasticity tensor. Equatiort4) and (2) are not lim V*(x,x";%c) = %RE{ B<m a;2 >BT , (19)
*

independent. In principle, either set of equations can be used to  x'—x

solve for either the unknown boundary displacement gradients\ghere Eq.(10) has been used. Equatiofs8) and (19) clearly
the tractions from the §peC|aI field bogndary data. Once the Wyow thatO*(x,x;f(C) and V*(x,x’;f(c) are nonsingular as’
known b_oundary quantities are d_etermlned, the boundary stresses oy the displacement problem whetdeis specified at the
and strains can be calculated directly framandt by Hooke’s boundary, Eq(11) is a set of nonsingular integral equations for
law. The displacement gradients along an arbitrary direction o, the other hand, for the traction problem where specified on

and the tractions based on the normal obtained by rot&iney  he poundary, Eq(12) is a set of nonsingular integral equations
m/2 clockwise at a generic poirtin the body can be evaluated bysq, 4.

d(x;ir)=J [—W(X",x;%p)d(x")+0(x’, x; &) t(x’)]ds’, 3 Numerical Example
C

@) As an illustration, Eq(12) is applied numerically to solve the
problem of an infinite plate subjected to a pair of collinear com-

t(Xif(r)=f [V(x %) d(x' ) = WX’ x: %) Tt(x')]dS'. pressive line forces as shown in Fig. 1. The 3) plane is taken
C

8
Either Eq.(1) or Eq.(2) contains singular integrals relateddas %2
well ast. This fact precludes the direct use of many convenient
numerical integration schemes such as Gaussian quadratures ir F
seeking numerical solutions. v
We can transform Eqg$1) and(2) into expressions that involve
singular integrals of eithet or t only. The transformation is based h/2 DX
on the following identity([3]): t 2 Co
S H\/A\ (A
-L sT (B)z'(B)’ ®) T F

whereS, H, andL are the Barnett-Lothe tensoffgl]) defined as o ) ] ]
Fig. 1 An infinite plate subjected to a pair of collinear com-
S=i(2AB"—1), H=2iAAT, L=-2iBB". (10) pressive line forces
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to coincide with the midplane of the plate. The top and bottom In solving Eqgs.(24) and(25), it is expedient to make a change

surfaces are at,=h/2 andx,= —h/2, respectivelyh being the
thickness of the plate. The compressive foréesFe, and —F
are applied, respectively, at¥=(0,—h/2) and y®=(0h/2),
wheree, is the unit vector in the,-direction. This problem has
been studied using integral transform techniques by Hitdrfor
isotropic materials and by Chiu and W] for anisotropic mate-
rials.
For the problem considered, E@.2) becomes

;[Ld(x(l)) + 8(x1) 8(X,+hi2)STF]

F+W* (xD y@:e))TF

27Xq
+J°C VE(xP x5 ed(x@)dx; (20)
1
E[Ld(x<2>) — 8(X1) 8(X,—h/2)STF]
~ F+W*(x?,yD:e)TF
- f“ VE(x@ xDie)d(xdxg  (21)

whered(x,) is the Dirac delta distributiorg, is the unit vector in
the x, direction, xY=x,e,—h/2e, and x?=x,e,+h/2e,. To
avoid appearance of(x,) in Egs.(20) and (21), we introduce
g(x) defined as

g(x M) =d(x¥) + 8(x;) (x,+ /2L ISTF,  (22)

q(x@)=d(x?)— 8(x;) 8(x,—h/2)L "1STF. (23)
Equationg20) and(21) can then be expressed in termsyk) as

%

1 N
SLa(x®)=f(xy )+ f v (xP X" e)a(x?")dxg

—w

(24)

©

1 .
> La(x?)=f(x®,y) - fﬁ V*(x@ X7 e q(xM)dx;
(25)

where

F+W*(x,y;e)) TF+V*(x,y;e)L " 1STF.

f(X,y): a 27TX1

Table 1 o,,=—who,/AF as a function of x;=2x;/h for n
=6, 12, 18 by the present method and by the integral transform
method

X1 n=6 n=12 n=18 Ref.[6]

0 1.3932 1.3990 1.3990 1.3947
0.2 1.2444 1.2397 1.2397 1.2403
0.4 0.8997 0.8961 0.8960 0.8985
0.6 0.5521 0.5670 0.5670 0.5646
0.8 0.3112 0.3285 0.3292 0.3292
1.0 0.1722 0.1782 0.1776 0.1791
1.2 0.0941 0.0885 0.0869 0.0860
1.4 0.0460 0.0354 0.0352 0.0347
1.6 0.0136 0.0067 0.0076 0.0086
1.8 —0.0063 —0.0066 —0.0064 —0.0065
2.0 —0.0144 —0.0122 —0.0125 —0.0135
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of variablex=tan(mr¢/2) so that the range of integrations is from
—1to 1. The transformed integrals in termsdtan be approxi-
mated by the Gaussian integration formula

1 n
flf<¢>d¢~jZl wif ()

where ¢; andw; are, respectively, the integration point and the
corresponding weight andlis the number of integration points. A
system of algebraic equations can be obtained by enforcing Egs.
(24) and(25) atx{“(¢;), a=1,2 andi=1,2...n. The result is

n

%Lq V-2 ciffgP =i, (26)
- 1
2 cifta e s Lai? =1 @7)
where
=X (), FI=Fx )y ),
ijaﬁ):m%f/*(X<“>(¢>i).x(f”>(¢j);el), B=3-a.

Onceq(® are solved from Eqg24) and(25), d(x(“)(¢;)) can
be determined by Eq$22) and(23). The stresses in the plate can
be calculated using E@8) with the Gaussian integration formula.
In particular, the stress,, at x,=0 was computed for a vinyl
ester reinforced by unidirectional glass fibers with the following
properties:

E,—24.4 GPa, E,=6.89 GPa,

G,,=2.85 GPa,

Table 1 displays the result @f,,= — who,,/4F as a function of
X;=2x%4/h for n=6, 12, and 18. For comparison purposes, the
values obtained using the integral transform metfiéd) are also
shown. For a fixed value of;, the value ofo,, converges very
rapidly with increasingn. Indeed the values fan=12 are essen-
tially the same as those for=18, which are in close agreement
with the results obtained using the integral transform method. The
result is quite satisfactory even far=6.

V1= V1= .325.

4 Conclusion

Nonsingular boundary integral equations for two-dimensional
anisotropic elasticity have been developed. The integral equations
can be treated numerically using Gaussian quadratures rather than
by dividing the boundary into discrete elements. This is especially
convenient for problems with infinite boundaries. An example of
an infinite plate subjected to a pair of compressive forces is given
to illustrate the effectiveness of the numerical scheme. It is shown
that very accurate results could be obtained with few integration
points.
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In an early work, the nonlinear response of a metallic square =eF(x,y,1)+0(&?). (3)
plate was investigated by Chu and Herrmdtihwho used Von ) ) ) )
Karman strains, and obtained the in-plane deformation fields hiPte thata andb are the dimensions of the plate,s the thick-
double Fourier series. Later, Yang and Sethna studied nonlin8&8S:Uo, vo, andw, are the midplane displacements in they
vibrations of near square metallic plates subjected to paramefied z-directions, respectivelyp is the density,E is the elastic
([2]), and external[3]) excitations in the presence of a one-to-ong&odulus,v is Poisson’s ratioF- is the external force per unit area,
internal resonance. They studied the interaction of two antisyr@is the transverse viscous damping per unit acsig,the dimen-
metric modes. Chang et ##] analyzed the nonlinear vibration of sionless damping coefficient, ank=a%b? and c;=E/p(1
rectangular plates in the presence of a one-to-one internal resor?). Parameters related to plate geometry are shown in Fig. 1.
nance. They used the method of averaging starting from the eq®ts indicate differentiation with respect to dimensionless time
tions of motion that are in terms of transverse deflection and stresg/e712c, /at’.
function. The plate is simply supported on all four sides and the nondi-

In this study, the nonlinear response of a simply supported meensional boundary conditions are
tallic rectangular plate subject to transverse harmonic excitations

is analyzed using the method of multiple scales. For a rectangulart X=0.1: w= (92—W—u—0 aty=01 w= f72_W_ -0
metallic plate, antisymmetric modes cannot be forced to have th@! X= o W= T =u=0, y=0L1 w= ay? “v=e
same natural frequencies unlike the case of a square(pkteAs (4)

a result, two arbitrary modes represented by modal amplitudes . .
T, andT,, with same natural frequencies are studied winars, ote that in the case of Chang et |@], the boundary conditions

r, and s are the mode numbers. Stability of solutions, criticaft'® satisfied on the average.

points, types of bifurcations in the presence of a one-to-one inter-spjution. It is assumed that two modes are interacting with
nal resonance together with primary resonance are determinedelith other through a one-to-one internal resonance. Because there
contrast to the study of Yang and Setligg the parameters usedis damping, the modes that are not excited directly by an external
in this analysis are closely related to physical quantities. To megkcitation or through an internal resonance will die out in a finite
sure the nearness of the frequencies of the two interacting modgsie, and only two modes will dominate the transverse motion of

one of the system parameters is assigned to tune the aspect ratigi8fplate. As a resuiy may be expressed as follows:
the rectangular plate. In-plane stretching forces that are used by

Chang et al[4] are not present here. The geometry of the problem W(X,Y,t)=Tn(t)sin(max)sin(nay)
and the loading are shown in Fig. 1. T, (D)sin(rmx)sin(smy) + O(e). )

The termsT ,,,(t) andT,¢(t) represent the time-dependent modal
Plate Equations amplitudes of the two interacting modes. The above transverse
motion assumption is more general than the one assumed by Yang
and Sethn42,3] who used antisymmetric modd&s,, and T, .
The right hand sides of Eq$l) and (2) can be neglected be-
Commibuted by the Aoplied Mechanics Division ofiE AMERICAN SOCIETY OF cause it is assumed that in-plane displacements are small as com-
MECHANIICLj-\L ENyGINEElfgflor publicatilon inlvlhle ASME OURNAL OF APPLIED pared to the out-of-plane displacement. The left-hand sides of

MECHANICS. Manuscript received by the ASME Applied Mechanics Division, rebEQs.(1) and(2) dQ npt Contain.non"near terms inandv. There-
24, 1999; final revision, May 2, 2000. Associate Technical Editor: A. A. Ferri. ~ fore, after substituting Eq(5) into (1) and (2), u andv can be

Using e=h?%/a? as a small dimensionless parameter and
=xola, y=yglb, z=zy/a, u=ugyls’a, v=vgle?a, W
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Fig. 1 The geometry of the problem

calculated by expressing them as linear combinationsiné B, D, G, and H are constants involvingn, n, r, s and geo-
terms and using the method of undetermined coefficients. @ncenetric and material properties of the plate, apB;;F,]
andv are calculated, substituting them awdnto Eq. (3), multi- = [ LR (x,y, O sinmmxsin(ary); sin(mx)sin(my)Jdxdy+ O(?)
plying by sinnmX)sin(nmy) and by sin{7X)sin(smy), and integrat- ([5)) " |t turns out that in the case analyzed h&eH, and D
ing over the plate, the governing equation in the direction will  — G The modal amplitudes are governed by nonlinear Egs.
yield the following equations in terms @i, and T : and(7), they are solved using the method of multiple sc&lé$.

d2T,, dTon To determine a first-order approximatiom,,, and T,s can be
—g¢ +2ce W+w§Tmn+(kfl)e ym2nlai T, expressed in the following form:
+eBTmaTrs+eDTho=eF1, 6) Tn(t,8) =Xo(To, T1) +8X1(To, Ty) +O(s?) 9)
d?T,e dTs o 4
g T2 g twalist (k= DeysTria T Tis(t,e)=Yo(To, T1) +&Y1(To, T1) +0O(&?) (10)
2 3 _ .
+eHT Tt eGT=eF,, () where T,=¢'t are the time scales and is a small parameter

where the natural frequencies, and w, of the two interacting introduced earlier. Substituting) and (10) into (6) and(7), and
modes are collecting coefficients of like powers efwe get differential equa-
tions governingX,, X;, Yo, andY;. The equations from*
ey ey der, governing; andY, are as follows, where primes indicate
=| m2+| k+ — 2)2 = r24|k+—|s?| 42 ~Orderng NGy 1 ar€ ’ > P
“1 (m K njm" and wp=|r K 257 derivatives with respect to time scalg and Q) is the external
(8) excitation frequency:

9*X 1. 1 _ _ _ — _
{ﬂ-gl + wfxlzi elQTOFl+ z efIQTolzl_Ax,ykm2n2,n.4elw1To+ Ax7n2m27746'w1T0_ 2iAlece'w1T0—Ax'ykm2n2774ef"”1T0

+ A ym?n? e 91To4+ 2iA w ce 1 To— 3A2A Del“1To— 3A A2De  *1To— DASe 311To+ 2iA e~ @1To

—2iALwq€'UTTo— BAAZE! (20200 To— BA AZel (917202 To— BA AZ6!(~ @17 202)To— 2B AA A €l “1To

—2BAAA e “1To—DAZede1To— BA AZe!(@17202)To (11)
and
ﬁ + ZY _leiQTOF + le*iQToF —A erSZ 4eiw2TO+A rZSZ 4eiw2T0_ 2iA CeiszO_ DASe3i “'ZTO—K erSZ 4e*iw2T0
g1z Tea¥aTy 275 2 AyyKrestm yyresem y®2 y yYKI“stm

+A,yr2s?rte02To4 21A wyce” @2To—3AZA Del“2To— DAJe 3w2To+ 21 A wye 1920 2iA] w,e!@2To
_ BKyAiei(Zwlfwz)To_ BAyKiei(wZ*Zml)To_ BAyA)%ei(zler wy)To_ BAyAiei(*Zmlfwz)To_ ZBAyAXKXeiszO

—2BAAAe w2To—3A A’De 2T, (12)
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Fig. 2 External resonance detuning parameter, o versus the first-mode amplitude  a,, in the presence of one-to-one internal
resonance. a=0.5, b=1, m=1, n=8, s=2, r=4, k=1/4, y=0.0005, and ¢=0.03, B=13571.6, D=37281.6, F,=0, w, ,=167.78.
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Fig. 3 External resonance detuning parameter, o versus the second-mode amplitude  a,, in the presence of one-to-one internal
resonance. a=0.5, b=1, m=1, n=8, s=2, r=4, k=1/4, y=0.0005, and ¢=0.03, B=13571.6, D=37281.6, F,=0, w, ,=167.78.

In the presence of a one-to-one internal resonamge; w,, w; Iis expressed by using the detuning parameterthe particular
=w,+eA whereA=(y(n?—s?)7?)/2, (the mode numbers must solutions of Eqs(11) and (12) contain secular terms, depending
satisfy m®>+kn’=r2+ks?); together with primary resonanc®, on the resonance condition of the system. The solvability condi-
~w;, )=w,+e0o (note that the nearness of the excitation fretions are obtained by equating the secular terms to zero as shown
quency{) to any of the natural frequencies, or w, of the plate below:
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Fig. 4 Force-response curve, F; versus a; and a,. ¢=0.3, y=0.02, =3, k=1/4, a=0.5, b=1, m=1, n=8, s=2, and r=4, B
=13571.6, D=37281.6, F,=3, w,,=167.78.

%eimoFl_Axk7m2n2W4eimlTo+Axymznzﬂ_zleiwlTo %ei”TOFZ—Ayykrzszﬂ-Aei m2T0+Ay,yr252774eim2T0
_0; fwiTog__ 28 i1 Tg_ oA/ iwqT . — . .
2i1Aw c€10—3AA,De' 10— 2IA  w,€'“170 f2iAywzce'w2TOf3A§AyDe"“2T0*2iA§wge'“’2T°
—BAAZe (222" 9)To—2BAA A €' “1To=0, (13) _ o
—BAA% (20179 To—2BA A A€ 2To=0.  (14)

and LetA,=1/2(p;—iqy)e™t andA,=1/2(p,—iq,) €2 wherep; ,
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g; and\; are real functions of; ([7]). SubstitutingA, andA, in  positive real part. As the excitation amplitude decreasef to
(13)—(14) we get =15.7078, where point 2 is met, the system again assumes a
stable solution through a saddle-node bifurcation. At point 3, with
F,=19.5179, a Hopf bifurcation is observed. Between points 3
and 4 there exist two eigenvalues with positive real parts. When
P point 4 is reached, again due to a Hopf bifurcation the equilibrium
30,02+ P320s+2p1P20; 1 points are stable. At point 4, the excitation amplitleassumes
4 ’ (15) avalue of 47.3177. A detailed figure for the critical points is given
in enlarged portiorA.

. 2wicpy  (k—1)ym’n?m®q;  3D(pid;+a3)
Pi=-—pg  * B 4B

AiMg

, F1 (1—kym’n?z*p; 3D(pi+p.qs) ,
ql:E+ B 4B +pl)\l

3PP+ pad+2patil;  2wiCG
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the second mode is given. Note that equally numbered poift@d flexural rigidity is investigated. It is shown that for large

correspond to each other. enough values of flexural rigidity the capillary mstabllltles_arg
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and possible non-breakup of solder jets in the presence of atn®- Problem Definition
Sphﬁl’lc_ oxyfgen, V.I\_'L"Ch caku_ses_ th? aé)ppearanc? of g_layer (l)f Ox'deﬁ'he problem to be studied is now defined. Consider the capil-
on the interface. The work is timely because of its direct relevange, . o R : P ;

- . s - .~ 1Ay instability of a cylindrical jet of an ideal fluid having a sur-
to a host of emerging te.chnologles fexempllfled by solder Jettmg]"zgllcye tensiom)// and aysurface riJgidityD described furthergbelow
the manufacturing of microelectronic components. ¢ ¢ )

The radius of the jet is. In what follows, bothy and D are
[S0021-893(0)01203-4 assumed to be uniform in the azimuthal directiéni-urthermore,
they are taken as uniform in the axial directianas well, in order
to simplify the analysis. Physically, the assumption of axial uni-
1 Motivation and Introduction formity is justified based on the observations of the phenomenon.

Physical phenomena involving droplet generation and transp tthe case of solder, a monolayer of tin oxide forms very rapidly

mechanisms are of central importance in today’s science and tefffactically immediately after the exit from the orifice. The
nology. Examples of today’s leading technologies in this ardgéchanism of the monolayer formation is oxygen adsorption.
ereafter, the oxidation slows down and diffusion assumes an

range from chemical and pharmaceutical, to power/energy .
environmental technologies. Examples of emerging novel tecfoPortant role, he_nce the thl_ckness of the shell d_oe_s not vary very
uch, and the axial uniformity assumption hol&cci, Castello,

nologies are manufacturing and cooling of electronics and micrB!

electronics, the processing of new materials with advanced pr(gﬂd Passeronfel]). The assumption of azimuthal uniformity of

erties, biotechnologies, and micro and nanoscale technologi8d P follows from the observation that such distributions result

The present work investigates an unexplored aspect of the bin%h_e least stable behavior of the jet. . .

problem of monodispersed droplet generation by oscillation angd!t IS €xpected that viscous effects do not play a primary role in

breakup of a liquid jet. It is an aspect relevant to surface oxidati%e breakup dynamics of thin molten-metal jets, due to the high

of liquid metal jets, and directly applicable to a novel micro- eynolds number of the flow ‘.Nh'Ch IS d_ue in tumn to the h'gh

manufacturing process referred to as solder jetting. This proc&ie€d of the flow and the low kinematic viscosity of the material.

targets to dispense picoliter quantiti@soplets of solder at high | erefore, the jet flow is assumed to be an ideal flow in the

generation rates for the mounting of micro-electronic componerftdent analysis.

(Hayes and Wallacgl]). With this process, molten droplets are

applied directly to the bonding pads of a semiconductor(dre

chip) using a technique similar to ink-jet printing. Solidified drop-3 Base-State Solution

l:i:zuiiitﬁz:);n: dpaztng:ﬁetrherglgvsaer?t tt(()acbhonnodlothe i(élemtgtz; ssutz:tra;e 9 the frame moving at the uniform speed of the slug jet profile

droplet depoéition in micro-casting and %zivanced cogtinz; p?g*_e basic-state pressure and velocity for the incompressible, ideal
S ow, are respectively,

cesses. The state of the art in this technology was recently re-

viewed by Poulikakos and Waldvoggg]. vy

From the point of view of fluid dynamics, the problem of inter- P=2, U=0.

est in this work is the dynamics of a molten-solder jet, or molten-

metal jet, whose capillary breakup creates the d_esi_red drople_as. Perturbed-State Governing Equations

Even when shrouded by a sheath of inert gas, the jet is susceptible ) . i

to surface oxidation. The inert gas environment can at best onlySmall, linear perturbations to the above basic state are governed

limit the oxidation process. Such oxidation leads to a new makY the following restrictions of the Euler and continuity equations:

phology of the interface. One dynamic aspect of the oxidized au

interface, which is the focus of the present contribution, is the p—

added elasticity and the attendant flexural stiffness of the inter- at

face. This very aspect is the central point of the present work. Itigherein p, u(x,r,,t), and p(x,r,6,t) denote the constant den-

our goal to develop an understanding of the role of these effegfisy, and the perturbation to the velocity and pressure, whiled

on the capillary breakup characteristics of the jet. Thus we invesdenote the radial coordinate and time, respectively. Combining

tigate the stability of an inviscid axisymmetric jet of uniform surthe above equations yields

face tension and flexural rigidity. It is shown that for large enough )

values of flexural rigidity the capillary instabilities are suppressed. Vep=0,

The result corroborates the observed stabilization and possible, p is harmonic.

non-breakup of solder jets in the presence of atmospheric oxygeninterfacial conditionglinearized are needed on=a in order

which causes the appearance of a layer of oxides on the interfage complete the formulation. The kinematic condition for this
It should be noted that we are aware of only one othgdeal flow is simply

(semijanalytical study which attempts to investigate the role of
oxidation on the instability of a molten-metal jéArtemev and our

Kochetov[3]). While that study mostly focuses on the develop- W_g’
ment of a model for the oxidation process, its treatment of the
surface rigidity is rather primitive, and amounts to retaining onl

=—Vp, V-u=0,

here subscriptr denotes the radial component, and
the last term on the left-hand side of E@) below in order to (=~ $(X,6:1)) is the local perturbation to the shape of the jet. The
capture the elastic effects; thus missing a major portion of t cond and final condition is the dynamic condition on the inter-
contribution of the flexural stiffness to the stabilization. face, which requires that the pressure perturbagioref the jet,
Whereas the algebraic manipulations below follow closely RagfSt bglpyv the |nterface, be balanced solely by the surface tension
leigh’s original derivations, the main contribution is the particula®nd rigidity of the interface. .
In the absence of surface-tensiémembrang effects, shape

form of the dynamic boundary condition in E@) below, as well . i ’ S .
as noting the relevance, and hence the need for a quantitamturbatlons of a pressurized elastic cylindrical shell of radius
' are governed by

understanding, of this physical problem.
This problem constitutes the first step in modeling the influence 1

of surface oxidation on the capillary breakup of a jet of molten DV4(—2+V2

metal. The work is timely because of its direct relevance to a host a

of emerging technologies exemplified by solder jetting in theshereE is the Young’s moduludh is the uniform shell thickness,

manufacturing of microelectronic components. andD is the so-called flexural rigidity, defined as

z Eh " 4
(+zd"=Vvp, (1)
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D Eh® s [alj(e) , | Ealhalj(a)
T 1217 Ypad) | @) TN TR (@
with » denoting the Poisson’s ratio of the shell. Equatibnis the (h/a)? a?
isotropic limit of the general case which was studied in Simmonds X [m(l— a®—n?)%+ | (4)

[5]. On the other hand, in the absence of elastic effects, if solely
the capillary effects are considered, a simple analysis stiofvs 6 Discussion

Drazin and Reid6])
Instability results if there exists a root sfwhich possesses a

L v = @) positive real part. In the classic limit &a/y=0 it is seen clearly
Py ¢=p. that the growth rate is given by Rayleigh's original expression:
Given the linearity of the analysis, Eqd) and(2) can be com- 1 alj (@) .
bined in the leading order as follows: s=v a%p 1 (@) (1-a®=n9) .

o ¢ ) o1 ) 2 o Thus, in the absence of surface rigiditiE€0) all long-wave

-V ;*V {|+Dbv ?*V é”“an =V'p. (3 axisymmetric modesn(=0) with dimensionless wave number,

_ less than unity are unstable. The introduction of rigidig0)
The form of the underlined term is selected so as to ensure ftegluces the growth rate and will eventually render the problem
correct form of the dispersion relation in the linear limit. Thdully damped, even for the long-wave disturbances. The stabiliza-

operatorV* is added in front of the underlined term in order tdion follows from the positivity of the coefficient d in Eq. (4).
cancel the same in front gf in the right-hand side, in the limit Therefore, a molten-metal jet whose oxidized interface builds up
E=0. As an aside, the origin of th& 2 term is the curvature of rapidly enough in the downstream direction will become stable to

the unperturbed interface. capillary breakup.
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Subsequently dropping the carets, the solutions to the Euler alﬁ
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I EZ 527 - EZ . . .
Axisymmetric Deformation of
2\ 2 2\2 . . . .
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poral growth rates, of the disturbances:
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{— (40?21 = 1?)
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Let (r, 6, 2) denote the standard set of polar cylindrical coordik is readily verified using7—11) that(11), is satisfied identically,
nates. This note was inspired by the statement on p. 197 of Funbereag11), reduces td3).
[1] that, in the linear theory of elastically isotropic axisymmetric
bodies under axisymmetric loads, a body forpe in the
zdirection is . . . “the only non-vanishing component that can bé?eferences
treated by[Love’s stres}sfunction.”l This statement is based on [1] Fung, Y. C., 1965Foundations of Solid MechanicBrentice-Hall, Englewood

: ; ; Cliffs, NJ.
]Er]ees ?r?:?rrw\ﬁgln(:gggﬁteglicgmg?mngmco;g:&%ﬂerkm vector satis [2] Love, A. E. H., 1944 A Treatise on the Mathematical Theory of Elasticity

Dover, New York.
(1_V)V4Fz:_pz 1)

[3] Timoshenko, S. P., and Goodier, J. N., 19T@gory of Elasticity 3rd Ed.,
McGraw-Hill, New York.

and that the auxiliary equations for the physical componénts
oy, 05, 7) Of the axisymmetric stress tensor have the same form
as those given by Lovi2] on p. 276 in terms of a stress function L.
x. In (1), V2=a?/ar2+r~Yalar + 32922 is the axisymmetric La- Proper Boundary Conditions for
placian andv is Poisson’s ratio. Fung’s remark might suggest th o ; ;
the only way to treat an axisymmetric radial body fofgeis to altnflmtEIy Layered OrthOtrOpIC Media
introduce the radial componeRt of the Galerkin vector. This, in
turn, would lead to an additional nonhomogeneous biharmor\i_s L. Bonnaud
equation to solve. T

The present note gives a simpler alternative for treating radig@raduate Student
body forces. | show that the introduction ofadial load potential

J. M. Neumeister
®:J' f p,drdz,

(2) Associate Professor

and a slight modification of the expressions given by Love for ti@epartment of Solid Mechanics, Royal Institute of
radial and axial displacement componentsind w lead to the Technology, S-100 44 Stockholm, Sweden

nonhomogeneous biharmonic equation

(1—v)Vi=—p,+(1-2v)V20+0,,,, 3)

where a comma followed by a subscript denotes differentiati

with respect to that subscript . [§, (and hence®) vanish, (3)
reduces td1l).

The key step in accommodating radial as well as axial bo
forces is to modify the second of the two equati¢®8) on p. 276

of Love [2] by adding a certain load term. Thus, | set
Eu=—(1+v)x, 7,
Ew=(1+v)[2(1—v)V2x— x,,,— 2(1—2v)0],

&stress analysis of a plane infinitely layered medium subjected to
surface loadings is performed using Airy stress functions, integral
transforms, and a revised transfer matrix approach. Proper

oundary conditions at infinity are for the first time established,

hich reduces the problem size by one half. Methods and approxi-
mations are also presented to enable numerical treatment and to
overcome difficulties inherent to such formulations.
[S0021-89360)01103-X]

whereE is Young’s modulus. From these equations, the straid- Introduction

displacement relations,

e=u,, €=r 'u, e=w,,, y=U,tWw,, (5)

and the stress-strain relations,

Oy €r
vE
(1+wv)| o9 =E(er+eg+ez)+E €y,

o e

z z (6)
2(1+v)r=Ev,
([3], p. 10 follow the stress-stress function representations

O',-=(VV2)(—)(,”—2V®),Z (7
oo=(vV2x—r"x,,—210),, (8)
Uz:[(z_V)VZX_XIZZ_ 2(1-v)0],, 9

7':[(1_V)VzX_X!zz_(l_ZV)G]:r- (10)

Layered media, and their analysis are important in many tech-
nical applications: e.g., microelectronic components, sandwich
structures, structural composite materials, or soil layers. Lami-
nated composites consist of different elastic layers, often individu-
ally orthotropic, but can from a structural mechanics point of view
be sufficiently well described with homogenized elastic properties
([1,2])). However, detailed stress fields in individual layers close to
highly loaded regions are still necessary for, e.g., failure analysis.
For a fair picture of elastic responses, standard finite element
methods are sufficient but for a large number of layers, for high
stress gradients and singularities, etc., analytical and semi-
analytical methods still have advantages. Generally, integral trans-
forms render layerwise four coefficients and thus systems with
layers require determination ofp4unknowns. The stiffness or
flexibility matrix approach uses layer strains or stresses as state
variables giving a system off2simultaneously linear equations
([3-5]). Another method, the transfer matrix approach, step by
step eliminates the unknowns for intermediate layers. Final equa-
tions to be solved involve only layers with boundary conditions
prescribed[6-8]).

Of course, these expressions reduce to Love’s if the body forcesn previous work, semi-infinite systems are modeled as a finite

vanish.

number of layers on semi-infinite half-planes which, using the

All that remains is to satisfy the two equilibrium equations ifransfer matrix method, leads to a linear system of eight equations.

the radial and axial directions:

ot T,Z+I’71((Tr—0'9)+pr:0, T,r+0‘zvz+|’717'+ pz=(2. )
11

Fung calls this a “strain” function.
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layered systems are presented based on the transfer matrix iggrewritten asS;(&,y) =Q;(&,y)K;(€) (see Eqs(A5), (A6) and
proach, which reduces the number of equations to four. Mota?7) for explicit expressions forQ;(¢,y)). After solving for
details of the analysis can be found elsewh@es). Ki.1(&) in Eq. (2), the continuity condition reads

2 Airy Stress Functions and One-Dimensional Fourier
Transform Ki+1(§):Qi_+11(§ry:O)Qi(fry:ti)Ki(f)EMi(g)Ki(f)- (3)

Solutions to plane boundary value problems are readily ex-
pressed with the Airy stress functigp(x,y) fuffilling a fourth-  Equation(3) defines the transfer matrM; (&) used here, which is
order PDE. With boundaries and axes of orthotrdftyand 2  slightly different compared to previous work6—8]). With the
coinciding with x and y-coordinates(Fig. 1), a one-dimensional choice of local coordinates, all transfer matrices depend on only
Fourier transformwith respect tox) results in an ODEin y) for  |ayer properties and not of layer position which is essential here.
the transformed stress functigh(¢,y), the solution to which is For any other layei + p, repetitive use of Eq(3) leads to

(EN)

Cbonho(g,y):a(g)e’“‘ay-i-b(g)e’ﬁmy-i-c(§)e“|§‘y+d(§)e5‘§|y Ki+p(§)=[Mi+pfl(§) e M|(§)]K|(§) (4)

(1)
These four equations and eight unknowns together with four
boundary conditions need only to be solved for finite stackings.
Digg(£,y)=[a(€) +b(£)yle”V+[c(&)+d(£)ylelY. (1b)  For semi-infinite layered media, boundary conditions at both the
surface and infinity can be expressed involving only the first layer

Only for the orthotropic case, the solution depends on elastic co%?—t of coefficients Wh'c.h. reduces the size of the system to four.
Two boundary conditions are prescribed at the top layer sur-

stants throughr and B (see Eqs(Al)). The coefficientsa(¢), ; ; h .
b(£), c(£), d(&) are functions of the transform variable they face, expressing Fourier transforms of applied tensile and shear

are determined by transformed boundary conditions imposed Sresse (£, y=0)=27(¢) andX,(§,y=0)=33(¢).

transformed stresseS, (£,y), 3,,(£,Y) (but notS,(£,y)) or on In seml-lnflplte periodic .Ia.yered. medigaepetitive units withg

transformed displacement$(,y) andV(&,y) (see Eqs(A2)). layers, see Fig.)lthe coefficients in layers 1 and+imq can be
related to each other through repetitive use of &q. After di-

3 Continuity, Boundary, and Infinity Conditions agonalization of the multiple layer transfer matrix

My(€) .. .M(&)], this gives
A local coordinate systenx(y) is used in each layer where the[ aé) 18] g
y-coordinate always measures the distance from each respective

layer top(see Fig. 1 Continuity between layerandi+1 implies Kiimg(§)=[Mq(&) ... M1(E)]1MK (&)

that real, and thus transformed, values of both stresses with m .

y-components and displacements remain unchanged over a =P1(§)D1(&)P1 ()K41(8). (5)

bonded interface. With these collected in a vector s&(€,y)

— T -

=[2y(£Y). 2 (£Y),U(£y). V(£.)] continuity reads This [Mq(8) .. .M,(£)] matrix has unity determinan(8]). Its

four eigenvalued;, positive and reciprocal in pairs, are collected

S(&y=t)=S1(£y=0), ) in descending order in the diagonalized mafbix( &) so thath,

>N,>1/\,>1/\;. In subsurface layers stresses must be limited
wheret; is the thickness of layer. Collecting the sought for (asm increasesand thus the corresponding set of coefficients
coefficients in avectoKi(g):[a(g),b(g),c(g),d(g)]r, S(&Y) Kiimg(é) must be bounded sinc@;.nhq(é,y) is expressed in
local coordinates, cf. Eq$l),(2). This implies that all terms in-
volving \; and A\, must vanish since™ increases indefinitely
with mfor A>1. This, in turn, gives the sought for conditions for
Normal load the top layer coefficient&; expressing infinity condition for a
T T I T T T T distribution layered half-plane: The first two components in the vector
T T T f T Shear load PLY(&K4(&) of Eq. (5) must be zero. WithL;(¢) and L,(£)
- A A a— o a— UJistribution being the first two lines iP; }(£), these conditions read

\ P /
\ 23 A / L1(£)K4(£)=0 (6a)

\ / La(&)K4(&)=0. (60)

\ 42 / it " With | additional layers on top of a repetitive urtt, , 1(&) is first
\ 43 / winsize g related tok,(£) through Eq(4) and replaced in Eqg6a,b) which
\ - - / again poses the appropriate conditions onlykoi{¢). Also for
/ nonperiodic stackings or media of finite thickness, the previous
method is still applicable:;(£) andL,(¢) tend towards a limit as
\2ge1 / g increases since the influence of the far-field conditions on the
N state of the first layer diminishes with increasm@Saint Venant's
\ _——— / principle). Truncating at finitey corresponds to approximating the
- _ medium with an infinite sequence gfsized unities.
With K,(&) known, all othersK;(¢) are determined through
Fig. 1 Multilayered half-plane with repetitive unit of g layers  EQ. (4); insertion in appropriate expressions and inverse Fourier
(local coordinates (x,y) for every layer ) transform then gives stresses and displacements.
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4 Solution and Numerical Procedure system to be solved reduces to four. In regions where numerical

. . difficulties due to ill-conditioned matrices arise, they are circum-
The analysis presented above generally requires numerlg ILted with the aid of existing asymptotically correct homoge-

treatment, which involves difficulties while extracting eigenvalueﬁeous half-planes solutions. As an example, the detailed stress

and eigenvectors due to ill-conditioned matri¢gg10,11). Reli- . . . ) A
; analysis of a cross-ply laminate subjected to tensile and tangential
able a(£),b(¢),c(¢).d(¢) values can only be obtained up to Aine I)gads is presen?e)::i in an extenojled reporf %y ’

certain limit &, (&, depends only on laminate properjieghile
the inverse Fourier transform requires accuracy for Righarticu- Acknowledgment
larly for small x andy-values.

For smally, far from the loaded region, accuracy is not a major This project is financed by faculty funding from the Royal In-
concern since stresses approach zero. On the other hand, accugtiiyte of Technology, Sweden. The authors would like to express
becomes essential for concentrated or sing(dag. ling loads, their sincere gratitude to Prof. Peter Gudmundson for many valu-
when also thec-distance is sufficiently small. There, in the closedble ideas and comments.
vicinity of a highly loaded region, the influence of the lamin di
thickness disappears and the solution asymptotically approac endix
the one of a loaded homogeneous half-plane. Such solutions ar®rthotropic constitutive equation and coefficients:
available in closed fornd(12]: isotropic;[2]: orthotropig and can
additionally be integrated fror&;,, up to infinity thereby avoiding
truncation errors in the inverse Fourier transform. The approxima- ey S1u Sz O Oy
tion is inaccuratgin a relative sengein regions of low signifi- =|sS,; S;» O
cance, i.e., with low stress magnitudes while the agreement is
excellent where it matters. Improved accuracy by one order of 0 0 s
magnitude over the entirédomain can further be achieved by
numerically evaluating the difference between the homogeneous

half-plane (hhp and multilayered half-planémhp) solutions. Seet 2512 Sest 2512\ 2 Sno
Mg y)e*¢ and 3M(£,y)e ¢ are harmonics of the real @, B= * -—
stress functiong™(x,y) and o"™(x,y) ([6]) and both describe 251 2511 S11
the same material, submitted to the same load but with differentReal and transformed stresses and displacements:
boundary conditions ag=t,. The shorter the wavelengifie.,

the higheré), the less significant is the influence from the bound-

aries, i.e., the first interface. Thus, the two functions tend toward

&y Ty

2eyy Tyy (A1)

2 2

P2 @
Ux(XaY):a_yz(Xy)/) Ex(f&’):d_yz(f,)’)

one another ag approaches infinity. With inverse Fourier trans- P
form F~%, real stress becomes Ty (Xy) = W(X’y) S(&y)=—ED(EY)
mh _ h — 15 mh hh ) , do
a™RX,y)=0"RX,y) FFTHEMREY) -2 EY)] (7) Thy(X,Y) = axay(x'y) Exy(g,y)=—|§d—y(§,y) (A2)
Stresses o"(x,y) and hhp-coefficients to be inserted in 5
ShhR(£,y) are given in Eqs(A3), (Ad). U(Ey)=—i S?MZTq;(é,y)—SMS‘P(%,y)

5 Conclusion sy, A%

do
A simple and straightforward method to formally establish the V(&y)= 2 d—y3(§,y)—(see+ S12) d—y(S,Y)
full stress solution for infinitely layered media with generally or-
thotropic constituents is devised. Both boundary and infinity con- Homogeneous half-plane stresgesth of,(s) and riy(s) pre-
ditions are posed on the top layer solution; hereby the size of theribed surface stresges

[ e @t B [ [aByoy(s)+(x=9)75(5)](X=5)?

U= | ey (9 (ay) 2 (x5 ©°
o @t [* aPyois)+(x—s)H(s)

N =TV eyt (x-sPIay P (- 97 O (A3
hhi _a+ﬁ * [aﬁya';(S)'i‘(X—S)Tiy(S)](X—S)

LTXyp(X'y)_ _— L(ay)?+(x=9)?][(ay)?+(x—5)?]

Coefficients for a homogeneous half-plane:

B3(6)—1 sgr&)5,(£)
(B— )&

aS$(£)—isgrid)s,(é)
(B—a)&

a"™mée)= b"R(&) = "M &)=d"£)=0 (A4)

Matrix relating state vecto§; to coefficient vectoK;:

Qi(&,y)=Ci(£,y)Di(&,y)Ei(£,y) (A5)
Orthotropic case:

Journal of Applied Mechanics SEPTEMBER 2000, Vol. 67 / 631



Ci(¢)=diag — £2,i¢l€,—i&,—1€)) Ei(¢£,y)=diage @&l e AlEly galdly ghlely)

1 1 1 1
o B —w -8 fi(y)= 5117’23_ S12 (A6)
D= ‘ ; ‘ ‘ 91(¥)=8117"—(S121See) ¥
1(a)  f1(B) (@) 1(B) (yela,B)
gu(e@) 091(B) —0gi(a) —0i(p)
Isotropic case:
Ci(¢y)=diag —|&|.i&, —i sgr(é),— 1) Ei(&y)=diag e *l¢Y, e AlélY gelély, hltly)
1 gy 1 |ély Kz=S11~S12
l,=511—(S12F Sge)
1o foy) —1 fy(-y) | 2o Su s Ses AT
DIEN=| oy K oy | OV (A7)
2 Gy 2 %Ly 92(y) = (11— 81| ély — 2544
l2 ha(y) =l ha(=y) hao(y)=s11(|€ly—3) = (s12+ See) (|é]y— 1)
I
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applicability of various analytical assumptions regarding timing of 1, =0
reactions in an elastic multibody system where the inertia and Fi=f(5))H(5;) where H(é))= 0 5<0
' ]

contact compliance properties vary smoothly.
The contact force-displacement relatiby;) for any contact de-
Dynamics of Chain of Rigid Bodies Connected by Com- Pends on the geometry of the contact region and the contact pres-
pliant Contacts sure. If the bodies are elastic and contacting surfaces are spherical,
the stress field is three dimensional and Hertz contact theory gives

Consider a collinear system of three elastic sph&e8,,Bs  f(5,) =k;5% while if the contacting surfaces are cylindrical with

: ; . i
such as that shown in Fig. 1; the spheres have mas$ggallel axes, the stress field is two dimensional difd;)

M{,M,, M3, respectively. At any timéthe spheres are located at— ke;d; . Herekg; andk,; are the stiffness coefficients at tiith

(6)

coordinatesX;(t) and they have $Pe?d$i(t), i=1,2,3 in the contact for spherical and cylindrical contacts, respectively. These
axial direction. This system has kinetic enefgyhere interaction forces can be derived from potential functions for ei-
3 ther spherical contadil s or cylindrical contactJ.
— 2
2T= 2 MiX. ey (512U =gy 53°H(61) + kep 53°H( 5) (7a)
or

When any pair of bodies are compressed together, contact forces 2 2
act between the bodies at the points of contgetl,2. These 2Uc=ke101H(81) +kea52H(57). (7b)

forces prevent overlap or interpenetration; if the bodies are non-The three-body system is conservative if the stresses remain
conforming and have small compliance of each contact region, t8Rstic. Assuming that there are no changes in configuration dur-
forces arise from internal deformations that decrease rapidly Wity contact because the contact period is very sitialt at the
radial distance from the contact area between each pair of tougime time acknowledging that contact forces are generated by
ing bodies. Because these deformations remain local to the Snw"y small relative displacementghe equations of relative mo-

area of contact where a pair of nonconforming bodies touch, thgyn for cylindrical contacts can be obtained frg#, (5) and(7b)
cause only a very small displacement or indentation of the syggether with Lagrange’s equation;

face. The normal component of relative displacement or indenta- ) )
tion at thejth contact pointd; , which is the sum of the surface 0 d“z;/dr st a z;H(zy) ®)
indentations of both bodies, is given by 0/ |cosa 1 || d?z,/d7? ¥?2,H(2,)

i=1.2. (2) where a nondimensional time and ratio of stiffness to mass
ﬁéadientsf are obtained as

1 COSa

0i=Xj1— X,
If the system has no active external forces acting during t
collision period, momentum is conserved and the center of mass 0=k /M, T=wotV1+M;/My.
has speed/:M‘lziS:lMiX_i(O), M=M;+M,+Ms. For this MM , ko My(My+My)
system where momentum is conserved the kinetic energy candesa= M1+ M) (M My)’ YT m 9)
separated into part that is invariant during the collision process 1r A2 TS 1 T2
and a partial kinetic energy of relative motidi; i.e., T=Ty This paper is concerned with identifying necessary conditions
+0.5MV2. The kinetic energy of normal relative motidf is for multibody dynamics where accurate calculations can be ob-
defined as 3 tained on the basis of an assumed order of impulsive reactions at
_ . Ao multiple contacts; namely that reactions can be assumed to occur
2Trel(t)=21 Mi[Xi(t) = V]*. ®)  either sequentially or simultaneously. For this purpose, consider a
n fsystem that has a smooth gradation of properties wherethe
gradient of mass and is the gradient of stiffness; e.g., let masses

At any point of contact, a part of the initial kinetic energy o
o o) S fansfred UG COMPIESSOnl,— 44, My, M g and stfnesses k= x. These
ergy ; ' . inertia and stiffness gradients give
Conservation of translational momentum relative to the center

of mass G=32_,M;(X;—V), together with(1) and (2) give cosa— 1 2=X (10)

- - S : 1+’ U
=M"! + 24 + + ;
2Tre=M T IM1(Mo+M3) 81+ 2M1M2510,+ Ma(Ma+M2) %21 e y—1 is the gradient of wave speed and a characteristic
=72+22,7, cosa+73 (4) frequencywg is given byw3=k,/M,.

In this coupled system, the question of whether reaction im-
pulses aiC; andC, are simultaneous or sequential is a manifes-
;=8 [M M (M,+M3) 1Y z,=8,[M *Mz(M;+M,)]¥2  tation of the difference in phase of response at contacts. The ei-
(5) genvalues that give nondimensional frequencies of modes are

where

+

These nondimensional variables which symmetrize the equatiaps  (1+ 7)(1+ 9?) [
S E— (11)

1+p+7° 492
were suggested by Ivanov and Lariri]. —= > 1- 1+ 72 (1592
The normal contact forces;, j=1,2 which cause these rela- 0 ) o ] 7’_ Y )
tive displacements are solely compressive and they depend on thé&0 retrieve the velocities in an inertial frame from the nondi-
geometry of the contact region. The normal contact forces at cdhensional relative velocitiedz /d7, the following relations are

tactsC, andC, can be expressed as obtained:
X1 v
. ) . Xpt =y V
X (t) lt)  X(h) . o

R — —
3 ky n(1+7) 7"?
1 -1 3/2
¢ c ! V(1+ ) (1+ n+7° 7
4 2 ( n ( n 77) -1 77771/2(14»772)

Fig. 1 Collinear system of three spheres with small local com- dz/dr
; : X . (12)
pliance at contact points dz,/dr
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Equations(8) are solved numerically by means of a Rungesystemy and 7, the magnitude of final velocities depend on the
Kutta method of first order. For a system of initially unstressegradient of masses but the distribution of final velocities is not
bodies, ;= §,=0. A distribution of initial velocities that repre- affected by the mass gradient The results for both cylindrical
sents direct collinear impact between a single b&yand the and spherical contacts converge to the same asymptotic limits;
remainder of the chain is considered; i)'el,: Vo, )'(2:)'(3:0 or convergence is slightly faster for cylindrical contacts but the be-
51/Vo=1, 8,/V=0. havior is qualitatively the same.

The timing of reactions at the different contact points depends
. ) . on only one parameter—the gradient of wave spgedL in the
Effect of Property Gradients on Terminal Velocity system. Figure 3 shows that jf< 1, after impact within the sys-
Distribution tem the maximum compression at the second point of co@act
peeurs substantially later than that @t ; i.e., the local wave
speed decreases with increasing distance from the impact point.
On the other hand, i>1 maximum compression occurs almost
simultaneously aC, and C,. For linear compliance, maximum
mpression occurs simultaneously# 6.7, and larger values of
gradient of wave speeg- 1 result in maximum compression
at'the more distant contact poi@t before maximum compression
atC, . With very largevy this occurs because the natural period of
oscillation atC, is small in comparison with the natural period at

In Fig. 2 the distribution of final velocities in a three ball chai
has been plotted as a function wt at two different values of the
mass gradient;. Essentially, if y<1 the results asymptotically
approach those for sequential collisions whereagsifl the re-
sults asymptotically approach those for simultaneous collisions.
With a pair of nondimensional parameters that characterize t

sequential simultaneous C,; i.e., the rapidly increasing rate of oscillation for successive
impact _ﬂ_. contact forces in the direction of propagation is the cause of pre-
100 —————————— — ===~ _ N mature separation and a subsequent secondary imp@st. at
B3 —~"- ~ In a collinear system of compact hard bodies with nonconform-
\\ =~ ing contacts that are initially touching, impact results in a wave of
o 067 1 N compression that travels away from the point of impact. This
{ P wave travels at a speed that depends on the compliance of local
= e deformation at each contact and the inertia of the adjacent bodies.
= // P For a per_iodic c_hain of spherical bo_dies composed of r_na_terial
g *033 L, .10 -+ v PR with densityp, this speed of propagation _throm_Jgh the cham_ is of
5 * 8, |-~ Lo the order ofc~ |Y7p whereY is the uniaxial yield stressThis
- n=10 o7 L speed typically is of the order of 0.1 of the speed of propagation
5 __,,./_‘:./ - JE7p through a continuum composed of the same material. If the
§ 0 \ system he_ls smoothly varying properties, th_e on_ly factor affecting
z simultaneity of reactions at the contact points is the gradient of
2 B, & wave speedy—1. If y>1 the reactions are almost simultaneous
h -033k 1 ~ and may involve secondary impacts whereag<ifl the reactions
are almost sequential and they occur in order of increasing dis-
04 0'2 — 0'5 0 2' — é 10 tance from the point of impact. The reactions that develop at
’ ’ ’ ' initially quiescent contacts are the result of very small deforma-
@ stiffness gradient/mass gradient, ¥ 2
sequential simulttaneous Linear contact stiffnesk,=2.76Y R, is energetically equivalent at the force for
impact impact initial yield to nonlinear Hertzian contact stiffness.
0.67|- + e
————— B i £ sequential impact simultaneous impact
l,o.aaL Byl ~~_ T~ 4 i T ]
ey=1.0 ~- N \
= n=40 ~ P v -\ + _l
~ N~ - \
= R c \\\
= 0 § NN 1 i
= - ././ a
g B | T g N T |
e —_——— - AT E \\\j'
2-0 33l —+ - o RN o N
8 x _F\ N~ __l
< g Li =1.0 ~. S~
: - ~ - \\\i
o 54 — - ~ - —
£ -0.671- B, + - e —
= Tic J
-1.0 || \ | [ I |
) stiffness gradient/ mass gradient, %2 stiffness gradient / mass gradient, r?
Fig. 2 Effect of gradient of wave speed y—1 on terminal ve- Fig. 3 Nondimensional time of maximum compression 7 at
locities of balls B, , B,, and Bj in three-sphere chain with mass first and second contact points as function of gradient of wave
gradient (a) =1 and (b) »=4. Calculations assume elastic im- speed y—1. Calculations assume elastic impact (e,=1) and
pact (e,=1) and either linear compliance  (light lines ) or Hertz  either linear compliance (light lines ) or Hertz compliance
compliance (heavy lines ). (heavy lines ).

634 / Vol. 67, SEPTEMBER 2000 Transactions of the ASME



tions that arise during the contact period. In analyses of multibodyf6] Hurmuzlu, Y., and Marghitu, D. B., 1994, “Rigid Body Collisions of Planar
impact dynamics, these time-dependent reactions can be replaced K'Z“egnga“c Chains With Multiple Contact Points,” Int. J. Robot. RésS, pp.
by reaction impulses at points of secondary contact only if eithe :

I . . .
[7] Ivanov, A. P., 1995, “On multiple impact,” Prikl. Mat. Mekh59, No. 6, pp.
y<lory>l 887-902.
[8] Adams, G., 1997, “Imperfectly Constrained Planar Impact—A Coefficient of
References Restitution model,” Int. J. Impact Engl9, No. 8, pp. 693-701.

) ) o . [9] Cundall, P. A., and Strack, O. D. L., 1979, “A Discrete Numerical Model for
[1] Wittenburg, J., 1977Dynamics of Systems of Rigid Bodi& G. Teubner, Granular Assemblies,” Geotechniqueg, pp. 47—65.
Stuttgart. ) ) . [10] Chatterjee, A., 1999, “Asymptotic Solution for Solitary Waves in a Chain of
[2] Glocker, Ch., and Pfeiffer, F., 1995, “Multiple Impacts With Friction in Rigid Elastic Spheres,” Phys. Rev. B9, No. 5, pp. 59125919
g#g\':oggssyzﬁvmv; %’cﬂgiﬁfn#gnll\llgfﬁérﬁmimm K. Bajajand S. W. [11] Stronge, W. J., 1998, “Mechanics of Impact for Compliant Multi-Body Sys-
[3] Pereira, M. S., and Nikravesh, P., 1996, “Impact Dynamics of Multibody ti”?ffv IUTAM Slymp. on Unllatsral rl:/lulnbohdleynammGh. Glocker and F.
Systems With Frictional Contact Using Joint Coordinates and Canonical Equa- __ [ €iffer, eds., Kiuwer, Dordrecht, The Netherlands.

tions of Motion,” Nonlinear Dyn..9, pp. 53—71. [12] Ivanov, A. P., and Larina, T. V., 1999, “On the Problem of Collinear Triple

[4] Pars, L. A., 1966 Treatise on Analytical Dynamic©xbow Press, Oakville, Collision,l’(' Proceedings of EUROMECH 397Grenoble, Springer-Verlag,
CT. New York.

[5] Johnson, W., 1976, “‘Simple’ Linear Impact,” Int J. Mech. Engng. Bdpp.  [13] Stronge, W. J., 2000mpact MechanicsCambridge University Press, New
167-181. York.

Journal of Applied Mechanics SEPTEMBER 2000, Vol. 67 / 635



Journal of
Applied

Mechanics

Discussion: “Response Bounds for (iv) An upper bound ofly] is
Linear Damped Systems” (Hu, B. and Iyll=<min{ V2X i (K)Eo, N2\ min( K EG - Y]

The computation of the upper bound(if) via steps(i)—(iv) is
Eberhard’ P" 1999’ ASME J. not as easy as that of some bounds in the literature. For instance,
Appl. Mech., 66, pp. 99741003 according to Shahruz and Mahavamé&®ikan upper bound ofty],

when the matrixXOM ~*K+KM 1D is positive definite(such as
in classically damped systejnss
S. M. Shahruz YIS N mad MY Ao MY Y30+ 750/ 0D) % (8)

Berkeley Engineering Research Institute, P.O. Box 9984, ,
Berkeley, CA 94709 wherew; is the smallest undamped natural frequency of the sys-

; . tem (1). It is evident that the computation of the upper bound in
e-mail: shahruz@robotics.eecs.berkeley.edu (8) is much simpler than that if7) via steps(i)—(iv).
Now, it is determined how conservative the upper boundg)in
In a recent paper, the authors consider the dynamics of and(8) are. In[1], the systen(1) with the following coefficient
n-degree-of-freedom linear system represented by matrices is considered:

My(t)+Dy(t) +Ky(t)=f(t), y(0)=yo, Y(0)=Yo, (1) 10 [5 -1
for all t=0, where the vector of displacement&) e R" and the 01 -1 1

vector of applied force$(t) e R". They obtain upper bounds onror different initial conditions the following upper bounds are
the norms of responses of the systéthfor the cases of free and gptained:
forced vibration. (B1) y4(0)=1, y»(0)=0, y1(0)=¥,(0)=0:

The authors obtain an upper bound Jpr(t) | :=[y(t) Ty(t)]*? ! 2 ' 2

}, D=(M+K)/2. (9)

for all t=0. Although, it is useful to know the time evolution of From nudmerlcal s@ulaﬂoz 2||y||=1, (1(;)
an upper bound on the functiar>|y(t)], it is more important to According to (7): [ly[|<2.51, (1®)
have a tight upper bound on According to (8): [ly[|<1. (10@)
lyll=maxly(t)[, (2)  (B2) y1(0)=0,y5(0)=1, y1(0)=y,(0)=0:

=0 From numerical simulation: ||ly||=1, (118)
which is an indication of the largest displaceméstrain of the According to (7): |y[|=<1.15, (1b)
system(1). A tight bound upper bound ofy|, which is desirable According to (8): |y||<1. (110)
for the worst-case scenario studies, results in less conservative )
designs. Results in(10) and(11) show that the upper bounds computed by

The authors write thaf1] “In comparison to the response (7) aremuch moreconservative than those obtained (@8y.
bounds available in the literature, the ones presented here are nddext, upper bounds are computed for another system whose
only closer to the exact responses, but are also simpler to cogfefficient matrices are given i{92) of [1]. For the coefficient
pute.” This statement is evaluated in the following discussion. £=0.1(see[1] for details, yo=[0 00 0]", andy,=[111 1", it
According to[1], an upper bound ofly| for the case of free is concluded that

vibration is obtained as follows: From numerical simulation: ||y||=1.64, (1)
(i) Compute According to (7): |yll<4.14, (1)
D*=M""DM Y2 K¥*=M"VKM 12 3) According to (8): |ly||<4.11. (12)
(i) Compute This example shows that botf) and(8) yield conservative upper
Amin(D*)/2,  for A2 (D*)<4\pn(K*), bounds ory|, even though8) resulted in a tight bound for the
1 system whose (_:o_efficients matrices are give9in
P D*)— N2 _(D*)—4ar.. (K* In summary, it is shown that the upper bounds on responses of
mln[ 2 (Amal D7) Ve D) = AN oK), (4) the systen(l) derived in[1] are neither easily computable nor are

1 tight, as it is evident froni10) and(11). Also, it is shown that no
_)\mm(D*)} otherwise. upper bound can be expected to be tight for all systems, as it is
2 apparent from(12).

(iii ) Compute
D'=D—-2uM, K'=K—uD+u?M, (5) References
1 1 [1] Hu, B., and Eberhard, P., 1999, “Response Bounds for Linear Damped Sys-
EO:_'ng Yot —ngYO, (6a) tems,” ASME J. Appl. Mech.66, pp. 997-1003.
2 2 [2] Shahruz, S. M., and Mahavamana, P. A., 1998, “An Upper Bound on Re-
_ 2 T Thge T sponses of Non-Classically Damped Linear Systems,” J. Sound 18, ,pp.
E5 =Eo+ u“yoMyot+ uyoMYo— yoDyol2. (GY)] 883-891.
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Closure to “Discussion of ‘Response with their results was not possibland maybe not even reason-

able since in our paper we discussed mainly response bounds with

Bounds for Linear Damped time evolution and not amplitude bounds

AL In conclusion, we agree with Mr. Shahruz that no upper bound
SyStemS (2000’ ASME J. Appl can be expected to be tight for all systems. In fact, in our paper we
Mech., 67, P. 636 also stated that K. Yae and D. Inman’s response bounds given in

paper([5]) are in some cases better than ours. But in contrary to
Mr. Shahruz we think that improvements on ttesponse bounds

Bin Hu are meaningful and do not consider only graplitude bound$o

e-mail: hbi@mechb.uni-stuttgart.de be important. Mr. Shahruz stated that our response bounds are
neither easily computable nor are tight. We hope that we have

Peter Eberhard been able to contribute to this interesting field of research and that

in the future more easily computable and tighter response bounds
. . ) ) will be developed.
Institute B of Mechanics, University of Stuttgart,

Pfaffenwaldring 9, D-70550 Stuttgart, Germany References
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The terme™"! appearing in this response bound plays an impor-
tant role. For the maximum amplitude of the responseinéy|,

we prefer to call it amplitude bound. S. Shahruz and P. MahavE)iSCUSSiOﬂ' “An Energy Method for

mana’s results in pap€f2]) and some results from W. Schiehlen

and the first author of this closure in papéf8,4]) are for the Analyzing I\/Iagnetoelastic Buckling and
amplitude bounds. Here we would like to point out that the pr

cedure listed in S. Shahruz’s discussion should be to compute ‘ﬁpndlng of Ferromagnetic Plates in
response bound given in E() above. It may not be meaningful Static Magnetic Fields” (Yang’ W_’

for the amplitude bounds. In Eq29) of our paper, we gave an

amplitude bound Pan, H., Zheng, D., and Cai, Z.,
maxly(t)] < 2\, (K)o 2 1999, ASME J. Appl. Mech., 66,
: pp. 913-917)

which also follows directly from Eq(1) in this closure. We can

see that for the computation of this amplitude bound, most operg-

tions in the procedure listed in S. Shahruz’s discussion are n pu—He Zhou

necessary. Compared with Mr. Shahruz and Mr. Mahavaman#&$ofessor, Department of Mechanics, Lanzhou University,

amplitude bound given in E¢8) of Mr. Shahruz’s discussion, we Gansu 730000, P. R. China

have the opinion that our amplitude bound is not harder to com-

pute since either the computation of the smallest undamped fre-

quency w, or the determination whether the matridM ~'K

+KM ~!D is positive semi-definite costs extra time. Though he The authors gave an energy method to analyze the magneto-

showed their amplitude bounds are tighter than ours for two eglastic buckling and bending of ferromagnetic plates in different

amples, we do not think this conclusion holds in general. Let §&atic magnetic fields. The elastic strain energy of E).em-

choose a simple example to explain this point. If we change ti¢oyed in this paper is for the bending of the beam-type plate. And

mass matrix in Eq(9) of Mr. Shahruz's discussion to in the derivation of magnetic energy of E@), the effect of end
edges on magnetic fields is not taken into account. After the lon-
gitudinal and transverse demagnetizing fadtiprand N, are cal-

(3 culated by Eqs(12)—(13), respectively, the expressions of critical
field B¢, and bending deformatiofi at free end are formulated by

and the numerical values of the damping matrix and the stiffnegs|s. (14) and (17), respectively. In this approach, the effect of

matrix remain unchanged, then Mr. Shahruz and Mr. Mahavamaidth, denoted byv here, is considered only in the demagnetizing

na’s amplitude bounds for both cases B1 and B2 become IA8ctors but not in the deformation. If a rectangular ferromagnetic

However, our amplitude bounds remain unchanged. They are splate under consideration is constrained by simple or clamped

2.51 for the case B1 and 1.15 for the case B2. It is not difficult teupports along the edges normal to the direction of width, it is

find examples which show neither method to be superior. possible that the same results for the magnetoelastic interaction

Besides, we would like to state that although Mr. Shahruz amdll be obtained sincé\; andN,, are independent on the boundary

Mr. Mahavamana’s paper about amplitude bounds for some namnditions. In other words, the results given in this paper are

classically damped systems was published in December 1998ndependent upon the support conditions of the edges along the

the Journal of Sound and Vibratigriheir results were not known longitudinal direction, which is obviously in contradiction to the

to the authors since our paper was received by the ASME Applipdactical problems. When the width of a rectangular plate in-

Mechanics Division on Aug. 24, 1998 and the final revision of thereases to infinite, from the theory of plates, we know that the

paper was received on Jan. 19, 1999. Therefore, a comparisi@ilection of the plate approaches to that of a correspondingbeam-
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0 1

or Mz[
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type plate. Whery is very large, e.g., T0order in Moon and Pao scribed, it can be found in Zhou and Zheli®,11]. It is obvious
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ever, it is found that the critical magnetic fie}, for this case of has been made in theoretical analysis since the Moon-Pao theory
cantilevered plates in transverse magnetic fields approaches toVii@s presented.”
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